

Commonwealth of Kentucicy OFFICE OF THE GOVERNOR

My Fellow Kentuckians:
This 2000 Kentucky Traffic Collision Facts report provides us with valuable statistics concerning traffic collisions on the roadways of our Commonwealth. These figures should also remind us that motor vehicle travel, although required by most to provide our very livelihood, many times results in injury and even death.

Each year I am saddened to learn, through this publication, the number of individuals killed and injured in traffic collisions throughout our state. The number of fatalities for 2000 increased by $.05 \%$, there being four more fatalities than during 1999. The 823 people who lost their lives in fatal traffic collisions in Kentucky represent a
 far too great a portion of our most valuable asset - our citizens.

Injury and death on our highways can be dramatically reduced if everyone will be alert, observe speed limits, never drink and drive, and always buckle-up. By following these few, common-sense rules, we can make our roadways safer for all Kentuckians.

COMMONWEALTH OF KENTUCKY Kentucky State Police
 919 Versailles Road
 FRANKFORT 40601

Pall E. Patton
GOVEANOA

ISHMON F. BURKS
COMMISSIONER

The Honorable Paul E. Patton
Governor of Kentucky
The Capitol
Frankfort, Kentucky 40601

Dear Governor Patton:

The Kentucky Revised Statutes, Chapter 189.635, requires that Kentucky State Police collect and tabulate traffic collision reports submitted by all law enforcement agencies in the Commonwealth.

It is my great pleasure to present, pursuant to the above referenced statute, this 2000 TRAFFIC COLLISION FACTS report. Statistical information, based on comprehensive evaluation and analyses of fatal, injury, and property damage collisions, is provided in this report.

Kentucky State Police would like to take this opportunity to express our gratitude to the Kentucky Transportation Center, College of Engineering, University of Kentucky, for compiling and printing our 2000 traffic collision statistics. For the seventh consecutive year, this mutually beneficial joint-effort has produced a report, which we feel more accurately reflects traffic collision data, while offering a broader analytical approach to many areas of special interest.

We sincerely hope that the information contained herein is beneficial to law enforcement agencies, national, state and local organizations, as well as citizens concerned with highway safety across "Our Great State".

Respectfully submitted,

Commissioner

DEDICATION

This 2000 Collision Facts Report

is appropriately
dedicated
to

THE EIGHT HUNDRED TWENTY-THREE CITIZENS
Who were victims of Fatal Traffic Collisions

During 2000 and to

Their Families
All citizens of the Commonwealth of Kentucky share the sorrow brought about by senseless tragedies on our streets and highways.

KENTUCKY TRAFFIC COLLISION FACTS 2000

Prepared by:

Kentucky Transportation Center College of Engineering University of Kentucky Lexington, Kentucky 40506-0281

In Cooperation with:
Kentucky State Police Commonwealth of Kentucky

Please Direct Inquires to:
Statistics Section
Records Branch
Kentucky State Police
1250 Louisville Road
Frankfort, Kentucky 40601
(502) 226-2169

TABLE OF CONTENTS

Message from the Governor, Commonwealth of Kentucky
Transmittal Letter, Commissioner, Kentucky State Police
Dedication
Introduction iii
2000 Collision Summary 1
Death and Injury Summary 2
Fatalities by Age and Sex 3
Severity of Injury by Type of Collision 4
Occurrence of Collisions by Type 5
Types of Collisions 6
Pedestrian Collisions 7
Hit-and-Run Collisions 8
Land Use 9
Collision Locations (Rural vs. Urban) 9
Location of Collisions (Type of Roadway) 10
Collisions on Interstates and Parkways 10
Collisions by Roadway Conditions and Roadway Character 11
Collisions by Light Condition 12
Two-Vehicle Collisions 13
Collisions by Day and Month 14
Holiday Collisions 15
Type of Vehicles Involved in Collisions 16
Truck Collisions 17
Driver Involvement by Residence and Sex 18
Age of Driver (All Collisions) 19
Age of Driver (Fatal Collisions) 20
Collisions Involving Teenage Drivers 21
Alcohol-Related Collisions 22
Safety Restraints 23
Contributing Factors - All Collisions 27
Contributing Factors - Specific Type of Collision 29
Collisions by County 37
Collisions Involving Drinking Drivers by County 40
Drivers Under Influence of Drugs by County 43
Collisions by Area Development District 44
Alcohol and Drug Collisions by Area Development District 45
Collisions by County (Parking Lot/Private Property) 49
Types of Collisions (Parking Lot/Private Property) 52
Age of Driver (Parking Lot/Private Property) 53
Contributing Factors (Parking Lot/Private Property) 54
Fatality Analysis Reporting System 59
Drivers Involved in Fatal Collisions - Age and Alcohol Involvement 59
Alcohol Involvement by Age and Test Results for Drivers Involved in Fatal Collisions 60
Fatally Injured Pedestrians 60
Safety Restraints and Ejection in Fatal Collisions 61
Child Restraints in Fatal Collisions 62
Selecting the Appropriate Car Seat for Your Child's Weight and Age 63
Cost of Kentucky Traffic Collisions 64

INTRODUCTION

KENTUCKY'S TRAFFIC COLLISION FACTS report for 2000 is based on collision reports submitted to the Kentucky State Police Records Branch. As required by Kentucky Revised statutes 189.635, "every law enforcement agency whose officers investigate a vehicle accident of which a report must be made...shall file a report of the accident...within ten days after investigation of the accident upon forms supplied by the bureau." The stated purpose of this requirement is to utilize data on traffic collisions for such purposes as will improve the traffic safety program in the Commonwealth." Data contained in this report are based solely on the observations and judgements of the state and local police officers who investigated each collision. The collision data is contained in an automatic system (Collision Report Analysis for Safer Highways) (CRASH). This system has edit checks for accuracy. Computer tabulations and summaries are again checked for accuracy before information is released or disseminated. It is hoped that the detailed information presented in the 2000 Kentucky Traffic Collision Facts report will, in fact, "improve the traffic safety program within the Commonwealth."

Definitions and Terms: the National MANUAL ON CLASSIFICATION OF MOTOR VEHICLE TRAFFIC CRASHES is used to ensure uniformity and compliance with federal requirements. Standard definitions and terms used in this booklet include the following:

Motor Vehicle Traffic Collision: any motor vehicle collision that occurs on a trafficway or that occurs after the motor vehicle runs off roadway but before events are stabilized.

Collision: an unintended event that produces death, injury or damage. The word "injury" includes "fatal injury."
Trafficway: the entire width between property lines or other boundary lines, of every way or place, of which any part is open to the public for purposes of vehicular travel as matter of right or custom.

Fatal Collision: is any motor vehicle collision that results in fatal injuries to one or more persons.
Fatality: a person or persons killed in a fatal collision (also referred to as "persons killed").
Nonfatal Injury Collision: any motor vehicle collision that results in injury, other than fatal, to one or more persons (also referred to as Personal Injury Collision).

Injured: a person or person injured in a collision (also referred to as "persons injured").
Property Damage Collision: any motor vehicle collision in which there is no injury to any person, but only damage to a motor vehicle or other property, including injury to domestic animals.

Alcohol-Related Collision: any collision in which an operator was observed to have been drinking by the officer investigating the collision.

NOTE: KRS 189.635 requires "any person operating a vehicle...who is involved in an accident resulting in any property damage exceeding $\$ 500$ in which an investigation is not conducted by a law enforcement officer shall file a written report of the accident with the state police within ten(10) days of occurrence of the accident..." Such reports are not included in the overall data presented in this report.

NOTE: Summary data on fatal collisions are included throughout this report. Additional data on fatal collisions can be found in the section titled "Kentucky's Fatality Analysis Reporting System (FARS)", pages 57-62.

NOTE: Prior to 1985, Kentucky utilized a ninety day cut-off for deaths resulting from fatal collisions. As of 1986, persons who died as a result of injuries sustained in a motor vehicle collision are counted as fatalities only if death occurred within thirty days from the date of the collision. This change from ninety to thirty days was made to be consistent with guidelines of the National Highway Traffic Safety Administration.

NOTE: Beginning with the 2000 Kentucky Traffic Collision Facts report, these statistics were tabulated under modified formats. Data from parking lots and private property are reported but summarized separately from collisions on public roads. Civilian report data are not included. UNLESS OTHERWISE NOTED, THE DATA ARE FOR PUBLIC ROADS ONLY. Therefore, some data are not directly comparable to previous years.

COLLISION SUMMARY

2000 COLLISION SUMMARY

TYPE COLLISION REPORTED	$\mathbf{1 , 9 9 9}$	$\mathbf{2 , 0 0 0}$	PERCENT CHANGE
FATAL (Public Roads)	NA	711	NA
NONFATAL INJURY (Public Roads)	36,125	34,732	-3.9
PROPERTY DAMAGE ONLY (Public Roads)	95,362	99,636	-4.5
TOTAL NUMBER REPORTED (Public Roads)	132,216	135,079	+2.2
PARKING LOTS / PRIVATE PROPERTY	NA	22,262	NA
TOTAL ALL REPORTED	NA	157,341	NA
FATAL (Total)	729	724^{\star}	-0.7

*Includes 13 fatals on parking lots / private property

NOTE: Beginning with the 2000 Kentucky Traffic Collision Facts report, these statistics were tabulated under modified formats. Data from parking lots and private property are reported but summarized separately from collisions on public roads. Civilian report data are not included. UNLESS OTHERWISE NOTED, THE DATA ARE FOR PUBLIC ROADS ONLY, Therefore some data are not directly comparable to previous years.

DEATH AND INJURY SUMMARY

	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\%$ CHANGE
PERSONS KILLED - Public Roads	NA	810	NA
PERSONS KILLED - Parking Lots / Private Property	NA	13	NA
PERSONS KILLED (Total)	819	823	+0.5
PERSONS INJURED - Public Roads	54,951	53,129	-3.3
PERSONS INJURED - Parking Lots / Private Property	NA	1,353	NA
PERSONS INJURED (Total)	NA	54,482	NA

FACTS: APPROXIMATELY ONE OF EVERY 5,500 KENTUCKY RESIDENTS DIED AS A RESULT OF A FATAL TRAFFIC COLLISION DURING 2000 IN KENTUCKY. ABOUT ONE IN 82 KENTUCKY RESIDENTS WAS INJURED IN A TRAFFIC COLLISION IN KENTUCKY. *

> APPROXIMATELY ONE OF EVERY 12 DRIVERS LICENSED IN KENTUCKY WAS INVOLVED IN A TRAFFIC COLLISION IN KENTUCKY. ABOUT ONE OF 3,000 KENTUCKY DRIVERS WAS INVOLVED IN A FATAL COLLISION.**

* Based on 4,041,769 population estimate for 2000.
** Based on 2,754,348 licensed drivers In Kentucky in 2000 (including learner permits).

A total of 823 persons were killed during 2000. The total number of traffic fatalities increased 0.5%, with 4 more fatalities than during 1999.

53,129 persons were injured on public roads during 2000, a decrease of 3.3% from 1999 , or 1,822 fewer persons injured.

The chart at the right compares death rates for Kentucky vs. U.S. death rates computed by the National Safety Council.

The bottom chart plots persons injured by severity of injury. An incapacitating injury includes those injuries that required transport to a hospital.

TYPE INJURY	NUMBER	$\%$
INCAPACITATING INJURY	8,354	16
Public Roads	180	13
Parking Lots / Private Property	20,849	39
NON-INCAPACITATING INJURY	453	33
Public Roads	23,926	45
Parking Lots / Private Property	720	53
POSSIBLE INJURY		
Public Roads	53,129	
Parking Lots / Private Property	1,353	
TOTAL		
Public Roads		
Parking Lots / Private Property		

TOTAL DEATH RATES (deaths per 100 million miles traveled*)			
YEAR	KILLED	RATE	
		K Y	U.S.
1985	730	2.6	2.8
1986	808	2.8	2.6
1987	849	2.8	2.6
1988	840	2.7	2.5
1989	776	2.4	2.3
1990	851	2.5	2.2
1991	828	2.4	2.0
1992	819	2.2	1.8
1993	875	2.2	1.8
1994	791	2.0	1.8
1995	856	2.1	1.8
1996	846	2.0	1.8
1997	865	1.9	1.7
1998	869	1.9	1.6
1999	819	1.7	1.5
2000	823	1.8	1.5

*Miles traveled in Kentucky in $2000=46.7$ billion **Includes both Public Roads and Private Property

FATALITIES BY AGE AND SEX

The number of persons killed in fatal collisions in 2000 is shown by age and sex in the chart below. There were 560 males versus 250 females killed. Twenty-eight (28) percent of all persons killed in traffic collisions were in the 15 - to 24 -year old age group. Fifty-two (52) of the persons killed were pedestrians, four were pedalcyclists. The percentages represent the percent of males or females killed in the given age group (as a percentage of the total males or females killed).

AGE

SEVERITY OF INJURY BY TYPE OF COLLISION

The chart below depicts the number of persons killed and injured, by severity of injury, with 12 categories of collisions. As shown in the percentage column, collisions with moving motor vehicles (66\%) and collisions with fixed objects (24\%) account for 90% of the fatalities and injuries during 2000.

TYPE OF COLLISION	$\begin{aligned} & \text { TOTAL } \\ & \text { COLLISIONS } \end{aligned}$	FATAL COLLISIONS	TYPE OF INJURY				\% OF TOTAL OCCUPANTS KILLED OR inJured
			KILLED	INCAPACITATING INJURY	NON-INCAPACITATING INJURY	POSSIBLE	
NON COLLISION OVERTURNED	1,242	25	25	229	482	291	1.9
OTHER NON COLLISION	2,454	30	31	226	464	386	2.1
COLLISION WITH PEDESTRIAN	1,124	52	52	280	406	333	2.0
COLLISION WITH MOVING VEHICLE	90,739	271	336	4,746	12,960	17,565	66.0
COLLISION WITH PARKED VEHICLE	7,081	4	5	82	241	184	0.9
COLLISION WITH TRAIN	59	4	4	3	10	10	0.1
COLLISION WITH PEDALCYCLIST	582	4	4	95	211	159	0.9
$\begin{gathered} \text { COLISION WITH } \\ \text { DEER } \end{gathered}$	3,248	1	1	26	117	130	0.5
COLLISION WITH OTHER ANIMAL	1,414	1	1	26	86	90	0.4
COLLISION WITH FIXED OBJECT	24,401	311	340	2,521	5,566	4,255	23.5
COLLISION WITH OTHER OBJECT	2,735	8	11	120	306	523	1.8
TOTALS	135,079	711	810	8,354	20,849	23,926	100.0

OCCURRENCE OF COLLISIONS BY TYPE

Sixty-seven (67) percent of all collisions reported during 2000 involved collisions between two or more moving vehicles (not in a parking lot).

Eighteen (18) percent of all collisions involved collisions with fixed objects.

Fifteen (15) percent of all collisions did not involve a collision with either a moving vehicle or a fixed object. About 12% were other types of collisions (vehicle with pedestrian, deer, pedalcyclist, etc.) while the remainder were non-collisions (vehicle overturning and other non-collisions).

When looking at fatal collisions, the ratio among types of occurrences is different. Thirty-eight (38) percent of all fatal collisions involved a collision with another moving vehicle.

Forty-four (44) percent of the fatal collisions reported during 2000 involved collisions with fixed objects.

Collisions with pedestrians accounted for 7% of the fatal collisions. Eleven (11) percent of the fatal collisions were other type collisions. Most of these (8%) were non-collisions (vehicle overturning or other non-collision).

Specific types of collisions and the percentage of total collisions and fatalities in each type of collision category are shown on the following page.

TYPES OF COLLISIONS

Collisions with other moving motor vehicles were responsible for 67% of all collisions reported during 2000, and accounted for 41% of all fatalities (persons killed). Collisions with fixed objects accounted for 18% of all collisions, but 42% of fatalities. Types of collisions are depicted below.

COLLISION WITH PEDESTRIAN:

Total Collisions:
\% of Total Collisions:
Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:

COLLISION WITH
PEDALCYCLIST:
Total Collisions:
\% of Total Collisions: Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:

COLLISION WITH
RAILWAY TRAIN:
Total Collisions:
\% of Total Collisions:
Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:

1,124
0.83\%

52
6.42\%

52
7.31\%

COLLISION WITH DEER:

Total Collisions:
582
0.43\%
0.49%
4
0.56\%

3,248
\% of Total Collisions:
2.40\%

Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
0.12\%
\% of All Fatal Collisions:
0.14\%

COLLISION WITH ANIMALS

 (excluding deer):Total Collisions:
\% of Total Collisions:
Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:

1,414
1.05\%

1
0.12%
1
0.14\%

COLLISION WITH FIXED OBJECT:

Total Collisions: 24,401
\% of Total Collisions: 18.06%
Persons Killed: $\quad 340$
\% of Total Fatalities: 41.98\%
No. of Fatal Collisions: $\quad 311$
\% of All Fatal Collisions: 43.74%

COLLISION WITH MOVING MOTOR VEHICLE:

Total Collisions: $\quad 90,739$
\% of Total Collisions: 67.17%
Persons Killed: 336
\% of Total Fatalities: 41.48\%
No. of Fatal Collisions: 271
\% of All Fatal Collisions:
38.12\%

PARKED VEHICLE COLLISIONS:

Total Collisions: 7,081
\% of Total Collisions: $\quad 5.24 \%$
Persons Killed:
5
\% of Total Fatalities: 0.62\%
No. of Fatal Collisions:
4
\% of All Fatal Collisions:
0.56\%

COLLISION WITH OTHER OBJECT:

Total Collisions: $\quad 2,735$
\% of Total Collisions: 2.02\% Persons Killed:

11
\% of Total Fatalities: 1.36\%
No. of Fatal Collisions: 8
\% of All Fatal Collisions:
1.13\%

NON-COLLISION OVERTURNED:

Total Collisions:
1,242
\% of Total Collisions: 0.92\% Persons Killed: 25
\% of Total Fatalities: 3.09%
No. of Fatal Collisions: $\quad 25$
\% of All Fatal Collisions:

OTHER

NON-COLLISION:
Total Collisions:
2,454
\% of Total Collisions: 1.82\%

$$
\text { Persons Killed: } \quad 31
$$

\% of Total Fatalities: 3.83\%
No. of Fatal Collisions: $\quad 30$
\% of All Fatal Collisions: 4.22\%

PEDESTRIAN COLLISIONS

Fifty-two (52) pedestrians were killed and 1,019 were injured in traffic collisions in 2000. The charts below depict ages of victims of pedestrian collisions and the factors related to the pedestrian vs. the vehicle at the time of the collision. Up to three pedestrian factors can be coded for one collision. Nineteen (19) percent of the pedestrians killed or injured were 14 years of age or younger, while 15% were age 65 or older.

PEDESTRIAN FACTOR	TOTAL ACTIONS FOR KILLED OR INJURED PEDESTRIANS BY AGE CATEGORY										
	Fatal Actions	Injury Actions	0-4	5-9	10-14	15-19	20-24	25-44	45-64	65-UP	Not Stated
Approaching or Leaving Vehicle	5	58	3	3	9	12	3	18	8	6	0
At Intersection	5	107	1	4	12	13	13	32	30	8	0
Crossing Against Signal	1	47	0	3	3	10	10	8	8	5	1
Crossing With Signal	1	62	1	2	4	2	5	14	25	9	1
Dark Clothing / Not Visible	20	50	1	1	4	12	7	27	13	5	0
Darting into Roadway	11	225	24	71	62	25	11	21	14	6	2
Drinking	5	64	0	0	3	2	8	36	15	3	2
Drug Related	0	7	0	0	0	0	1	5	1	0	0
Getting On or Off Vehicle	0	14	0	1	1	4	3	3	1	1	0
In Crosswalk	1	110	2	5	6	15	12	32	28	10	1
Jogging	1	7	0	0	0	2	1	4	1	0	0
Lying in Roadway	1	12	0	1	1	0	3	6	1	1	0
Not at Intersection	9	109	4	12	23	8	7	36	14	13	1
Not in Roadway	4	55	2	3	5	9	8	13	7	10	2
Physical Impairment	2	5	0	1	0	0	0	2	2	2	0
Playing in Roadway	0	29	2	8	12	2	1	1	2	0	1
Pushing Vehicle	0	3	0	0	0	0	1	1	1	0	0
Skating/Skateboarding	0	14	1	5	3	3	2	0	0	0	0
Walking in Roadway	22	154	5	3	26	16	13	63	30	20	0
Working in Roadway	1	26	0	0	0	0	5	16	6	0	0
Working on Vehicle	0	16	2	0	0	0	4	7	0	3	0
TOTAL*	89	1,174	48	123	174	135	118	345	207	102	11

| PEDESTRIAN
 FACTOR | VEHICLE ACTION | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

* These totals are higher than the actual number of pedestrians involved because they reflect multiple pedestrian actions.

HIT-AND-RUN COLLISIONS

Hit-and-run collisions are those collisions in which the driver leaves the collision scene with the intent of evading responsibility. Hit-and-run is a serious violation of the law. During 2000, there were 10,422 hit-and-run collisions, of which 13 were fatal collisions and 1,341 were injury collisions. As depicted in the chart below, most of Kentucky's hit-and-run collisions were property damage collisions (87\%). Fourteen (14) persons were killed and 1,796 were injured.

TOTAL	FATAL COLLISIONS	INJURY COLLISIONS	PROPERTY DAMAGE COLLISIONS	PERSONS KILLED	PERSONS INJURED
10,422	13	1,341	9,068	14	1,796

HIT-AND-RUN VICTIMS

As shown in the chart below, 5 of the 14 persons killed in hit-and-run collisions were pedestrians and none were pedalcyclists. One hundred twenty-seven (127) pedestrians and 36 pedalcyclists were injured.

TYPE OF VICTIM	PERSONS KILLED	PERSONS INJURED
Pedestrian	5	127
Pedalcyclist	0	36
Other	9	1,633
TOTAL	$\mathbf{1 4}$	$\mathbf{1 , 7 9 6}$

LOCATION OF HIT-AND-RUN COLLISIONS

The location of hit-and-run collisions are shown in the chart below. The largest percentage of hit-and-run collisions (44\%) occurred on local streets, followed by 23% on state routes.

TYPE OF ROADWAY	ALL HIT-AND-RUN COLLISIONS	FATAL COLLISIONS	INJURY COLLISIONS	PROPERTY DAMAGE
INTERSTATE	663	0	97	566
U.S. ROUTE	1,629	3	267	1,359
STATE ROUTE	2,405	8	445	1,952
PARKWAY	35	1	6	28
COUNTY ROADS	592	0	101	491
LOCAL STREETS	4,621	1	401	4,219
OTHER	477	0	24	453
TOTAL	$\mathbf{1 0 , 4 2 2}$	$\mathbf{1 3}$	$\mathbf{1 , 3 4 1}$	$\mathbf{9 , 0 6 8}$

LAND USE

COLLISION LOCATIONS

For the purpose of tabulating collision locations, an urban area is an area including and adjacent to a municipality or other place of 5,000 or more population. Rural areas are those places which do not meet this specification. As shown in the chart below, most collisions (62\%) occurred in urban areas. However, the majority of fatal collisions (59\%) took place in rural areas of Kentucky during 2000. Although nonfatal injury collisions were divided between urban and rural areas, nearly twice as many property damage collisions were reported in urban areas.

| AREA | Number
 of
 Collisions | \%
 Total | Fatal | \%
 Total | Nonfatal
 Injury | \%
 Total | Property
 Damage | \%
 Total | Killed | \%
 Total | Injured | \%
 Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RURAL | 51,502 | 38 | 416 | 59 | 15,453 | 44 | 35,633 | 36 | 470 | 58 | 23,830 | 45 |
| URBAN | 83,577 | 62 | 295 | 41 | 19,279 | 56 | 64,003 | 64 | 340 | 42 | 29,299 | 55 |
| TOTAL | 135,079 | 100 | 711 | 100 | 34,732 | 100 | 99,636 | 100 | 810 | 100 | 53,129 | 100 |

LOCATION OF COLLISIONS

The chart at right shows the number of collisions during 2000 by type of roadway, with percentages of all collisions.

As shown, relatively few collisions were reported on interstate highways (7\%).

Thirty-four (34) percent of all collisions occurred on Kentucky's "State Numbered" roads, with 53% of all fatal collisions reported during 2000 occurring on this type of roadway.

Although 23% of all collisions occurred on city streets, only 4% of the fatal collisions occurred on city streets.

TYPE OF ROADWAY	Fatal Collisions	Nonfatal Injury	Property Damage	\% Total
INTERSTATE	65	2,284	7,291	7
U.S. ROUTE STATE ROUTE	162	9,062	24,098	25
PARKWAY	19	14,108	31,112	34
COUNTY ROAD CITY STREET	51	29,624	6,519	7
Other	10	5,342	25,342	23
TOTAL	711	$\mathbf{3 4 , 7 3 2}$	99,636	$\mathbf{1 0 0}$

INTERSTATES AND PARKWAYS

The chart below depicts the incidence of collisions on Kentucky's interstates and parkways. Interstate collisions represent 7% of all collisions. Parkway collisions represent 1% of all collisions.

INTERSTATE	Collisions	Fatal Collisions	Nonfatal Injury	Property Damage	Number Killed	Number Injured
I-24	391	6	97	288	7	149
I-64	1,771	18	439	1,314	21	632
I-65	2,001	19	446	1,536	26	708
I-71	641	6	170	465	8	249
I-75	2,585	7	622	1,956	7	919
I-264	1,187	4	289	894	4	404
I-265	324	3	70	251	3	108
I-471	582	2	122	458	2	173
TOTAL	158	0	29	129	0	32

PARKWAY	Collisions	Fatal Collisions	Nonfatal Injury	Property Damage	Number Killed	Number Injured
Audubon	47	0	6	41	0	11
Blue Grass	188	2	39	147	3	60
Edward Breathitt	331	2	77	252	2	112
Daniel Boone	118	3	42	73	3	83
Louie Nunn	133	4	28	101	4	40
Bert Combs	150	4	49	97	9	70
Mountain	127	115	0	33	93	1

COLLISIONS BY ROADWAY CONDITIONS AND ROADWAY CHARACTER

The charts below depict percentages and numbers of all collisions and fatal collisions according to the conditions and character of the roadway on which the collision occurred.

The road conditions chart compares fatal collisions with all collisions for different road conditions identified by the police officer who completed the collision investigation report.

As depicted in the bottom chart, 79% of all collisions occurred on straight roads and 21% on curved roads. Thirty-eight (38) percent of the fatal collisions during 2000 occurred on curved roads.

COLLISIONS BY LIGHT CONDITION

Seventy-two (72) percent of all collisions reported during 2000 occurred during daylight hours. Twenty-three (23) percent of all collisions occurred during dark hours, and 5% occurred at dawn or dusk.

Fifty-four (54) percent of all fatal collisions occurred during daylight hours, 40% occurred during dark hours, and 5.9\% at dawn or dusk.

ALL COLLISIONS (excludes unknown light condition)

COLLISIONS
AT DUSK
25
(3.5\%)

(2.4\%)

FATAL COLLISIONS ONLY

TWO-VEHICLE COLLISIONS

83,948 traffic collisions (including 213 fatal collisions) reported during 2000 involved "two-vehicle" collisions. These collisions represent 62% of collisions and 30% of fatal collisions reported.

This chart depicts the manner of collision for these collisions, where known. The numbers and percents of each type of collision are shown.

Head-on collisions accounted for only 3\% of the total collisions involving two vehicles, but 29% of the fatal collisions.

Rear-end collisions reflect 34% of all two-vehicle collisions, but only 7% of the fatal collisions.
Sideswipe collisions (both meeting and passing) reflect 17% of all collisions and 8% of the fatal collisions.

Angle collisions represent the highest percentage of fatal collisions.

COLLISIONS BY DAY AND MONTH

The graph below shows all collisions and fatal collisions by day of occurrence (excluding unknown). Forty-two (42) percent of all collisions and 49% of fatal collisions occurred on weekends (Friday, Saturday, Sunday combined).

COLLISIONS BY DAY OF WEEK

July reported the highest number of fatal collisions; January showed the lowest. December ranked highest for total number of collisions and February showed the lowest number of total collisions.

HOLIDAY DEATH TOLL

The chart below depicts the number of deaths in fatal collisions and the number of alcohol involved deaths (as indicated by blood-alcohol tests) over holiday periods for five years. These holiday periods are established by the National Safety Council. The total number of persons killed in holiday periods in 2000 was 67 as compared to 48 in 1999.

HOLIDAY PERIOD	1996		1997		1998		1999		2000	
	Number	Alcohol Involved								
NEW YEAR'S DAY	6	4	2	1	11	3	2	1	5	2
MEMORIAL DAY	11	2	7	1	11	5	11	5	13	7
FOURTH OF JULY	17	4	5	2	6	3	5	3	20	5
LABOR DAY	5	3	13	6	8	5	12	7	7	3
THANKSGIVING	10	4	7	2	10	4	11	2	16	5
CHRISTMAS	2	0	8	4	5	1	7	3	6	2
TOTAL	$\mathbf{5 1}$	$\mathbf{1 7}$	$\mathbf{4 2}$	$\mathbf{1 6}$	$\mathbf{5 1}$	$\mathbf{2 1}$	$\mathbf{4 8}$	$\mathbf{2 1}$	$\mathbf{6 7}$	$\mathbf{2 4}$

HOLIDAY TIMES AND DATES

The times and dates below have been designated by the National Safety Council for holidays in 2000.

HOLIDAY	START	END
New Year's Day	6:00 pm Thursday, December 30, 1999	$11: 59 \mathrm{pm}$ Sunday, January 2, 2000
Memorial Day	6:00 pm Friday, May 26	$11: 59 \mathrm{pm}$ Monday, May 29
Fourth of July	6:00 pm Friday, June 30	$11: 59$ pm Tuesday, July 4
Labor Day	6:00 pm Friday, September 1	$11: 59$ pm Monday, September 4
Thanksgiving	$6: 00$ pm Wednesday, November 22	$11: 59 \mathrm{pm}$ Sunday, November 26
Christmas	6:00 pm Friday, December 22	$11: 59 \mathrm{pm}$ Monday, December 25

COMPARISON OF HOLIDAY FATALITIES/COLLISIONS

The Fourth of July holiday period registered the highest number of fatalities during 2000. The lowest number of holiday fatalities occurred over the New Year's Day holiday. The chart below shows relevant collision data for each of the holidays.

| HOLIDAY PERIOD | NEW
 YEAR'S
 DAY | MEMORIAL
 DAY | FOURTH
 OF JULY | LABOR
 DAY | THANKS-
 GIVING | CHRIST-
 MAS |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. PERSONS KILLED | 5 | 13 | 20 | 7 | 16 | 6 |
| NO. PERSONS INJURED | 373 | 473 | 372 | 496 | 705 | 356 |
| FATAL COLLISIONS | 5 | 10 | 15 | 7 | 16 | 4 |
| INJURY COLLISIONS | 254 | 270 | 235 | 316 | 423 | 213 |
| PROPERTY DAMAGE | 623 | 749 | 672 | 674 | 1,123 | 560 |
| TOTAL COLLISIONS | 882 | $\mathbf{1 , 0 2 9}$ | $\mathbf{9 2 2}$ | $\mathbf{9 9 7}$ | $\mathbf{1 , 5 6 2}$ | $\mathbf{7 7 7}$ |

VEHICLE TYPE	VEHICLES INVOLVED IN ALL COLLISIONS	PERCENT OF TOTAL	VEHICLES INVOLVED IN FATAL COLLISIONS	PERCENT OF TOTAL
Passenger Cars*	222,324	90.60	916	78.69
Taxicabs	323	0.13	0	0.00
Trucks	11,042	4.50	103	8.85
Motorcycles	1,140	0.46	38	3.26
Motor Scooters/Motor Bikes	90	0.04	2	0.17
School Buses	943	0.38	1	0.09
Other Buses	543	0.22	2	0.17
Farm Tractors/Equipment	200	0.08	2	0.17
Emergency	985	0.40	4	0.34
Other Public Owned	583	0.24	3	0.26
Other	5,709	2.33	93	7.99
Not Stated	1,513	0.62	0	0.00
TOTAL	245,395	100.00	1,164	100.00

* Passenger cars include automobiles and trucks registered for 6,000 pounds or less.

There were 245,395 vehicles involved in collisions during 2000. Of this total, 182,060 were involved in property damage only collisions, 62,171 were involved in injury collisions, and 1,164 were involved in fatal collisions. The majority (91%) of the vehicles involved in all collisions were passenger cars (79% in fatal collisions). Trucks accounted for 4.5% of vehicles in all collisions, but accounted for 9% of vehicles in fatal collisions. Motorcycles represented 3% of the vehicles in fatal collisions, but only 0.5% of vehicles in all collisions.

TRUCK COLLISIONS

Contributing vehicular factors, as noted by the investigating officer on the collision report, are shown below for collisions involving trucks. A truck is defined as a vehicle with a registered weight of 10,000 pounds or more. Up to two factors may be noted for each vehicle in the collision. The number represents the number of trucks with the given factor, and the percentage is the percent of all trucks with that factor. A total of 11,042 trucks were involved in collisions and 103 trucks involved in fatal collisions.

CONTRIBUTING VEHICULAR FACTORS	NUMEER OF TRUCKS INVOLVED IN:					
	ALL COLLISIONS		FATAL COLLISIONS		NONFATAL INJURY COLLISIONS	
	NUMBER	PERCENT	NUMBER	PERCENT	NUMBER	PERCENT
Load Securement	212	1.92	4	3.88	25	1.07
Brakes Defective	131	1.19	5	4.85	42	1.80
Tire Failure	90	0.82	0	0.00	22	0.94
Oversized Load on Vehicle	72	0.65	0	0.00	9	0.39
Tow Hitch Defective / Separation of Units	57	0.52	0	0.00	4	0.17
Other Lighting Defective	30	0.27	2	1.94	7	0.30
Steering Failure	18	0.16	0	0.00	7	0.30
Overweight	14	0.13	1	0.97	7	0.30
Headlights Defective	2	0.02	0	0.00	0	0.00
Other	388	3.51	7	6.80	74	3.17

The chart below shows the total number of truck collisions, as well as those with hazardous cargo, by type of roadway. There were 10,276 collisions in which a truck was involved. This resulted in 102 fatalities and 3,140 injuries. Twenty-two (22) percent of the truck collisions occurred on county or city streets, 21% on interstates, and 51% on U.S. and state-numbered routes. Twenty-five (25) percent of the hazardous cargo collisions occurred on interstates and 59% on U.S. and state-numbered routes.

TYPE of ROADWAY	ALL TRUCK COLLISIONS				TRUCKS WITH HAZARDOUS CARGO			
	FATAL COLLISIONS	INJURY COLLISIONS	PROPERTY DAMAGE	TOTAL	FATAL COLLISIONS	INJURY COLISIONS	PROPERTY DAMAGE	TOTAL
Interstate	17	477	1,651	2,145	1	11	44	56
US Route	24	580	1,692	2,296	1	18	35	54
State Route	40	749	2,110	2,899	4	21	51	76
Parkway	3	63	173	239	0	1	1	2
County	3	84	409	496	0	4	7	11
City Street	1	177	1,636	1,814	0	3	14	17
Other	0	51	336	387	0	0	6	6
TOTAL	88	2,181	8,007	10,276	6	58	158	222

The residence of truck drivers involved in collisions is shown below. Thirty-seven (37) percent of the drivers, with known residences, were non-residents of Kentucky. This percentage is 43% for fatal collisions and 29% for injury collisions. Local residents live in the county where the collision occurred.

RESIDENCE OF DRIVERS IN TRUCK COLLISIONS	ALL COLLISIONS	FATAL COLLISIONS	INJURY COLLISIONS
Local Resident	2,954	21	613
State Resident	3,019	26	652
Out of State Resident	3,530	35	688
Not Stated	1,539	21	381
TOTAL	$\mathbf{1 1 , 0 4 2}$	$\mathbf{1 0 3}$	$\mathbf{2 , 3 3 4}$

DRIVER INVOLVEMENT

RESIDENCE
 OF
 DRIVER

There were 227,592 drivers involved in collisions during 2000. Of these, 1,061 drivers were involved in fatal collisions. The chart below tabulates driver involvement by residence and shows that most drivers (68% of those in which residence is known) were local residents (reside in the county where the collision occurred). Many drivers in the unknown category are the result of hit-and-run collisions where the drivers' identities remain unknown. There are fewer drivers than vehicles because of collisions with unoccupied vehicles (generally a parked vehicle).

INVOL VEMENT BY RESIDENCE

RESIDENCE OF DRIVER	NUMBER INVOLVED IN ALL	PERCENT OF TOTAL	PERCENT OF TOTAL EXCLUDING NOT STATED
LOCAL RESIDENT	152,615	67	68
STATE RESIDENT	46,699	21	21
OUT OF STATE	24,535	11	11
NOT STATED	3,743	2	
TOTAL	$\mathbf{2 2 7 , 5 9 2}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

RESIDENCE OF DRIVER	NUMBER INVOLVED IN FATAL COLLISIONS	PERCENT OF TOTAL	PERCENT OF TOTAL EXCLUDING NOT STATED
LOCAL RESIDENT	626	59	59
STATE RESIDENT	282	27	27
OUT OF STATE	148	14	14
NOT STATED	5	0	
TOTAL	$\mathbf{1 , 0 6 1}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

As shown in the chart below, 59% of the drivers who were involved in collisions during 2000 (where sex was listed) were male; 41% were female. In fatal collisions, 73% of the drivers were male and 27% were female.

TOTAL COLLISIONS		
SEX	NUMBER IN ALL COLLISIONS	PERCENT IN ALL COLLISIONS
MALE	133,425	59
FEMALE	94,167	41
TOTAL	227,592	100

FATAL COLLISIONS		
SEX	NUMBER IN FATAL COLLISIONS	PERCENT IN FATAL COLLISIONS
MALE	776	73
FEMALE	285	27
TOTAL	1,061	100

AGE OF DRIVER (ALL COLLISIONS)

The chart below groups the ages of 225,553 drivers involved in traffic collisions in 2000 in Kentucky (for which age information was available). For each age category, the following information is shown: the percentage of drivers involved in all collisions, the number of drivers involved in these collisions is shown in parentheses, the percentage of all licensed drivers, and the number of licensed drivers is shown in parentheses (includes learner permits). This allows a comparison to be made between the percentage of a given age category is of the driving population and the corresponding percentage this age category is involved in collisions. The percentage of drivers involved in all collisions was higher than the percentage of licensed drivers for the age categories under age 35, especially for the 16 to 19 years of age category. This data does not differentiate drivers "at-fault" versus drivers "not-at-fault." There were 2,039 driver's ages which could not be determined. These drivers represent 0.9% of all drivers involved in all collisions. The percentages given below do not consider the "Unknown" category.

AGE OF DRIVER (FATAL COLLISIONS)

The chart below groups the ages of 1,060 drivers involved in fatal collisions in 2000 (for which age information was available). It should be noted that the drivers were not necessarily killed in the fatal collision. The number of drivers involved in fatal collisions exceeded the total number of fatal collisions. Percentages are based on drivers involved in fatal collisions during 2000 and do not include one driver whose age was not stated on the collision report. The numbers of drivers involved in fatal collisions and licensed drivers are in parentheses. The percentage of the driving population within a given age category can be compared to the corresponding percentage of involvement in fatal collisions within this same age category. The largest difference is the over-representation of teenage drivers in fatal collisions (12\%) compared to their percent of the driving population (6.3% including learner permits).

COLLISIONS INVOLVING TEENAGE DRIVERS

The percentages of teenage drivers (16 to 19 years of age versus other groups) involved in collisions during 2000 (by type) are shown below, irrespective of the driver at fault in the collisions reported. The numbers of collisions involving teenage drivers are also shown.

The number of teenage drivers involved in collisions, together with alcohol-related collisions, are shown below. It should be noted that tabulations for alcohol-related collisions were derived from the total number of drinking drivers as reported by the officer at the scene. FARS would report higher numbers. As shown, 993 teenage drivers were involved in alcohol-related collisions during 2000. There were 139 fatalities in collisions involving a teenage driver (67 of these fatalities were the teenage driver). There were 27 fatalities in alcohol-related collisions involving teenage drivers (20 of these fatalities were the teenage driver).

NUMBER OF TEENAGE DRIVERS INVOLVED IN:								
YEAR	$\begin{gathered} \text { ALL } \\ \text { COLISIONS } \end{gathered}$	FATAL COLLISIONS	INJURY COLLISIONS	PROPERTY DAMAGE	ALCOHOL RELATED COLLISIONS			
					FATAL	INJURY	PROPERTY DAMAGE	TOTAL
2000	31,684	123	8,831	22,730	23	430	540	993
1999	30,806	131	9,262	21,413	18	345	344	707
1998	28,505	147	8,649	19,709	14	315	315	644
1997	30,145	149	8,961	21,035	19	404	351	774

ALCOHOL-RELATED COLLISIONS

An alcohol-related collision is any collision where a driver was determined to have been drinking. For injury and property damage collisions, the following information gives the determination made at the scene by the investigating officer and given on the collision report. However, more detailed information regarding drinking drivers in fatal collisions is obtained from FARS, which follows up on blood alcohol content (BAC) results.

Alcohol-related collisions are listed by county beginning on page 40. The following information has been adjusted to agree with FARS statistics involving fatal collisions; therefore, these numbers may not agree with previously listed state totals.

2	FATAL COLLISIONS	181
¢	INJURY COLLISIONS	2,903
O	PROPERTY DAMAGE COLLISIONS	3,043
¢	TOTAL	6,127

	NUMBER KILLED	196
	NUMBER INJURED	4,447
	INCAPACITATING INJURIES	1,163
	NON-INCAPACITATING INJURIES	1,949
	POSSIBLE INJURIES	1,335

The total number of alcohol involved collisions is depicted in the upper left chart. The number of persons killed and injured in alcohol involved collisions is depicted in the right-hand chart.

6,126 alcohol-related collisions were reported during 2000. 2.9% of the alcohol-related collisions were fatal, 47% were injury collisions, and 50% were property damage only.

Comparison with previous years

During 2000, alcohol-related collisions increased by 13\% from 1999. The 196 persons killed in 2000 reflect an decrease of 12% when compared with 222 persons killed in 1999. During 2000, there were 4,447 persons injured in alcohol-related collisions, an increase of 12% from 1999 when 3,981 persons were injured.

Fatal collision data in the chart below have been adjusted to reflect follow-up studies of alcohol test results.

YEAR	TOTAL COLLISIONS (Alcohol Related)	\% CHANGE FROM PREVIOUS YEAR	TOTAL KILLED	$\%$ \%	TOTAL INJURED	$\%$ +/-
2000	6,127	+13	196	-12	4,447	+12
1999	5,441	+4	222	+8	3,981	+3
1998	5,222	-14	205	-12	3,882	-17
1997	6,070	-1	234	-9	4,653	+0
1996	6,150	-0	256	-8	4,637	-2
1995	6,163	+3	278	-3	4,741	+5

SAFETY RESTRA $\mathbb{N} T S$

The chartbebw com pares safety beltusage for the years of 1996 through 2000 . The data were obtaned as part ofan annualobservationalsurvey conducted at 200 sites across Kentucky. Data forchidren under fouryears of age were collected in both the frontand rearseats.

YEAR	PERCENT USING SAFETY BELTS	
	ALL FRONT SEAT DRIVERS \& PASSENGERS	CH LDRREN UNDER FOUR YEARS OFAGE
2000	60	87
1999	59	89
1998	54	80
1997	54	82

The chartbebw show sehick occupants by theirinjury status, and separates the occupants into categories of restraintused and restraintnotused. O verall, 15\% of allvehicle occupants were kiled or injured. A breakdown into restraintusage show s only 13% of those restrained were kiled or injured, com pared to 40% of those notrestrained. Com paring the percentages kiled or injured in the "R estraint U sed" and "R estraint N ot U sed" categores show s the benefiitofw earing a safety belt. The 'NOT APPLTAABLE " category includes occupants in vehicles thatnorm ally do not contain safety restraints, occupants where safety restraints usage was notindicated, occupants not in an approprite position, orpedestríns and pedalcyclist.

$\begin{aligned} & \mathbb{N} \text { JURY } \\ & \text { STATUS } \end{aligned}$	ALL OCCUPANTS		$\begin{gathered} \text { RESTRA } \mathbb{N} T \\ \text { USED } \end{gathered}$		RESTRA $\mathbb{N} T$ NOTUSED		$\begin{gathered} \text { NOT } \\ \text { APPLICABLE } \end{gathered}$	
	NUMBER	$\begin{gathered} \text { \% OF } \\ \text { TOTAL } \end{gathered}$	NUMBER	$\begin{gathered} \text { \% OF } \\ \text { TOTAL } \end{gathered}$	NUMBER	$\begin{gathered} \text { \% OF } \\ \text { TOTAL } \end{gathered}$	NUMBER	$\begin{aligned} & \text { \% OF } \\ & \text { TOTAL } \end{aligned}$
KILLED	810	0.2	247	0.1	418	1.5	145	0.4
INCAPACITATING INJURY	8,354	2.3	4,760	1.6	2,630	9.5	964	2.8
NON-INCAPACITATING INJURY	20,849	5.8	14,379	4.8	4,850	17.5	1,620	4.7
POSSIBLE INJURY	23,926	6.7	19,402	6.5	3,227	11.6	1,297	3.8
NOT INJURED	304,877	85.0	258,095	86.9	16,576	59.8	30,206	882
TOTAL	358,816	100.0	296,883	100.0	27,701	100.0	34,232	100.0

Note:There were 16,117 depbym ents offrontairbags and 409 ofside airbags.

CONTRIBUTING FACTORS

CONTRIBUTING FACTORS

A variety of factors and conditions can contribute to a collision. Police officers may indicate up to three driver factors for each driver, two vehicular factors for each vehicle, and up to two environmental factors for each collision. This table gives the number of collisions in which a given factor was listed at least once. Accumulations were made only once for each factor indicated in a collision, even if the factor was listed for more than one driver or vehicle. Therefore, the percentages give the percent of collisions in which a given factor is listed.

HUMAN FACTORS	ALL COLLISIONS	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Inattention	48,548	35.94	124	17.44
Failed to Yield Right of Way	18,455	13.66	91	12.80
Following Too Close	7,755	5.74	2	0.28
Too Fast for Conditions	7,512	5.56	64	9.00
Not Under Proper Control	6,979	5.17	86	12.10
Alcohol Involvement	6,117	4.53	171	24.05
Disregard Traffic Control	4,401	3.26	30	4.22
Misjudge Clearance	3,885	2.88	4	0.56
Distraction	3,782	2.80	11	1.55
Overcorrecting/Oversteering	2,972	2.20	68	9.56
Turning Improperly	2,450	1.81	8	1.13
Exceeded Stated Speed Limit	2,121	1.57	90	12.66
Fell Asleep	1,539	1.14	26	3.66
Improper Passing	1,532	1.13	7	0.98
Improper Backing	1,200	0.89	0	0.00
Drug Involvement	868	0.64	10	1.41
Lost Consciousness/Fainted	572	0.42	16	2.25
Weaving in Traffic	368	0.27	2	0.28
Cell Phone	362	0.27	2	0.28
Fatigue	359	0.27	5	0.70
Sick	306	0.23	6	0.84
Emotional	297	0.22	1	0.14
Physical Disability	239	0.18	8	1.13
Medication	227	0.17	2	0.28

CONTRIBUTING FACTORS

(cont'd)

A variety of factors and conditions can contribute to a collision. Police officers may indicate up to three driver factors for each driver, two vehicular factors for each vehicle, and up to two environmental factors for each collision. This table gives the number of collisions in which a given factor was listed at least once. Accumulations were made only once for each factor indicated in a collision, even if the factor was listed for more than one driver or vehicle. Therefore, the percentages give the percent of collisions in which a given factor is listed.

VEHICULAR FACTORS	ALL COLLISIONS	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Brakes Defective	1,544	1.14	10	1.41
Tire Failure	750	0.56	3	0.42
Load Securement	397	0.29	6	0.84
Steering Failure	340	0.25	2	0.28
Other Lighting Defective	194	0.14	2	0.28
Oversized Load on Vehicle Tow Hitch Defective / Separation of Units	160	0.12	2	0.28
Headlights Defective Overweight	51	0.11	1	0.14

ENVIRONMENTAL FACTORS	ALL COLLISIONS	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Slippery Surface	15,489	11.47	64	9.00
Animals Action	4,844	3.59	3	0.42
View Obstructed / Limited	3,925	2.91	24	3.38
Water Pooling	1,367	1.01	10	1.41
Glare	995	0.74	7	0.98
Construction Work Zone	718	0.53	6	0.84
Debris In Roadway	678	0.50	3	0.42
Improperly Parked Vehicle(s)	406	0.30	3	0.42
Shoulders Defective / Drop-off	396	0.29	4	0.56
Hole/Deep Ruts/Bumps	158	0.12	4	0.56
Improper / Non-Working Traffic	156	0.12	1	0.14
Controls	139	0.10	0	0.00
Maintenance / Utility Work Zone	66	0.05	1	0.14

CONTRIBUTING FACTORS

The following tables outline driver factors that contributed to each type of collision. Driver-contributing factors are summarized for each specific collision type. Any factor cannot be accumulated more than once in one collision. The percentages represent the percent a given factor occurred in a specific type of collision.

COLLISIONS INVOL VING	
EMERGENCY VEHICLES	
TOTAL EMERGENCY	963
VEHICLE COLLISIONS	
FATAL COLLISIONS	4
INJURY COLLISIONS	208
TOTAL KILLED	4
TOTAL INJURED	334

COLLISIONS INVOLVING FARM EQUIPMENT	
TOTAL FARM EQUIPMENT COLLISIONS	200
FATAL COLLISIONS	2
INJURY COLLISIONS	58
TOTAL KILLED	2
TOTAL INJURED	81

EMERGENCY						VEHICLE COLLISIONS

FARM EQUIPMENT COLLISIONS				
DRIVER CONTRIBUTING FACTORS	$\begin{gathered} \text { ALL } \\ \text { COLLISIONS } \end{gathered}$	PERCENT OF TOTAL	$\begin{gathered} \text { FATAL } \\ \text { COLLISIONS } \end{gathered}$	PERCENT OF TOTAL
Alcohol Involvement		1.00	0	0.00
Cell Phone	0	0.00	0	0.00
Disregard Traffic Control	9	4.50	0	0.00
Distraction	6	3.00	0	0.00
Drug Involvement	0	0.00	0	0.00
Emotional	0	0.00	0	0.00
Exceeded Stated Speed Limit	6	3.00	0	0.00
Failed to Yield Right of Way	37	18.50	1	50.00
Fatigue	0	0.00	0	0.00
Fell Asleep	1	0.50	0	0.00
Following Too Close	1	0.50	0	0.00
Improper Backing	0	0.00	0	0.00
Improper Passing	25	12.50	0	0.00
Inattention	71	35.50	1	50.00
Lost Consciousness/Fainted	2	1.00	0	0.00
Medication	0	0.00	0	0.00
Misjudge Clearance	8	4.00	0	0.00
Not Under Proper Control	5	2.50	0	0.00
Overcorrecting/Oversteering		1.50	0	0.00
Physical Disability	0	0.00	0	0.00
Sick	1	0.50	0	0.00
Too Fast for Conditions	6	3.00	0	0.00
Turning Improperly		1.50	0	0.00
Weaving in Traffic	0	0.00	0	0.00

CONTRIBUTING FACTORS (cont'd)

The following tables outline driver factors that contributed to each type of collision. Driver-contributing factors are summarized for each specific collision type. Any factor cannot be accumulated more than once in one collision. The percentages represent the percent a given factor occurred in a specific type of collision.

\left.| COLLISIONS INVOL VING | |
| :--- | ---: |
| SCHOOL BUSES | |$\right]$.

COLLISIONS INVOL VING ELEMEN-	
TARY SCHOOL AGE CHILDREN	
TOTAL ELEM. SCHOOL AGE	8,217
CHILDREN COLLISIONS	
FATAL COLLISIONS	54
INJURY COLLISIONS	3,169
TOTAL KILLED	
ALL AGES	74
6-12 YEARS OF AGE	17
TOTAL INJURED	
ALL AGES	6,901
6-12 YEARS OF AGE	2,477

SCHOOL				
DRIVER CONTRIBUTING FACTORS	ALL COLLSIONS	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Alcohol Involvement	8	0.86	0	0.00
Cell Phone	2	0.21	0	0.00
Disregard Traffic Control	19	2.04	1	100.00
Distraction	31	3.33	0	0.00
Drug Involvement	3	0.32	0	0.00
Emotional	1	0.11	0	0.00
Exceeded Stated Speed Limit	6	0.64	0	0.00
Failed to Yield Right of Way	89	9.55	0	0.00
Fatigue	2	0.21	0	0.00
Fell Asleep	1	0.11	0	0.00
Following Too Close	44	4.72	0	0.00
Improper Backing	27	2.90	0	0.00
Improper Passing	16	1.72	0	0.00
Inattention	350	37.55	0	0.00
Lost Consciousness/Fainted	0	0.00	0	0.00
Medication	3	0.32	0	0.00
Misjudge Clearance	166	17.81	0	0.00
Not Under Proper Control	29	3.11	0	0.00
Overcorrecting/Oversteering	6	0.64	0	0.00
Physical Disability	0	0.00	0	0.00
Sick	2	0.21	0	0.00
Too Fast for Conditions	34	3.65	0	0.00
Turning Improperly	21	2.25	0	0.00
Weaving in Traffic	3	0.32	0	0.00

ELEMENTARY SCHOOL AGE CHILDREN COLLISIONS (6 TO 12 YEARS OF AGE)				
DRIVER CONTRIBUTING FACTORS	$\begin{gathered} \text { ALL } \\ \text { COLLISIONS } \end{gathered}$	PERCENT OF TOTAL	$\begin{gathered} \text { FATAL } \\ \text { COLLISIONS } \end{gathered}$	PERCENT OF TOTAL
Alcohol Involvement	186	2.26	6	8.11
Cell Phone	30	0.37	0	0.00
Disregard Traffic Control	318	3.87	5	6.76
Distraction	331	4.03	0	0.00
Drug Involvement	40	0.49	0	0.00
Emotional	22	0.27	0	0.00
Exceeded Stated Speed Limit	86	1.05	5	6.76
Failed to Yield Right of Way	1,306	15.89	13	17.57
Fatigue	12	0.15	0	0.00
Fell Asleep	46	0.56	2	2.70
Following Too Close	522	6.35	0	0.00
Improper Backing	72	0.88	0	0.00
Improper Passing	119	1.45	3	4.05
Inattention	3,475	42.29	8	10.81
Lost Consciousness/Fainted	31	0.38	3	4.05
Medication	9	0.11	1	1.35
Misjudge Clearance	175	2.13	0	0.00
Not Under Proper Control	366	4.45	7	9.46
Overcorrecting/Oversteering	123	1.50	8	10.81
Physical Disability	10	0.12	0	0.00
Sick	10	0.12	0	0.00
Too Fast for Conditions	469	5.71	3	4.05
Turning Improperly	140	1.70	0	0.00
Weaving in Traffic	26	0.32	0	0.00

CONTRIBUTING FACTORS (cont'd)

The following tables outline driver factors that contributed to each type of collision. Driver-contributing factors are summarized for each specific collision type. Any factor cannot be accumulated more than once in one collision. The percentages represent the percent a given factor occurred in a specific type of collision.

COLLISIONS INVOLVING PEDESTRIAN	
COLLISIONS INVOLVING PEDESTRIANS	1,124
FATAL COLLISIONS	52
INJURY COLLISIONS	907
TOTAL KILLED	52
TOTAL INJURED	1,019

PEDESTRIAN COLLISIONS				
DRIVER CONTRIBUTING FACTORS	$\begin{gathered} \text { ALL } \\ \text { COLLISIONS } \end{gathered}$	PERCENT OF TOTAL	$\begin{gathered} \text { FATAL } \\ \text { COLLISIONS } \end{gathered}$	PERCENT OF TOTAL
Alcohol Involvement	63	0.00	8	0.00
Cell Phone	3	0.27	0	0.00
Disregard Traffic Control	37	3.29	0	0.00
Distraction	28	2.49	0	0.00
Drug Involvement	11	0.98	2	3.85
Emotional	15	1.33	0	0.00
Exceeded Stated Speed Limit	17	1.51	3	5.77
Failed to Yield Right of Way	122	10.85	1	1.92
Fatigue	0	0.00	0	0.00
Fell Asleep	2	0.18	0	0.00
Following Too Close	11	0.98	0	0.00
Improper Backing	5	0.44	0	0.00
Improper Passing	9	0.80	0	0.00
Inattention	316	28.11	5	9.62
Lost Consciousness/Fainted	3	0.27	0	0.00
Medication	1	0.09	1	1.92
Misjudge Clearance	25	2.22	0	0.00
Not Under Proper Control	32	2.85	1	1.92
Overcorrecting/Oversteering	3	0.27	0	0.00
Physical Disability	6	0.53	1	1.92
Sick	2	0.18	0	0.00
Too Fast for Conditions	19	1.69	2	3.85
Turning Improperly	3	0.27	0	0.00
Weaving in Traffic	6	0.53	0	0.00

BICYCLE COLLISIONS				
DRIVER CONTRIBUTING FACTORS	ALL COLLISIONS	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Alcohol Involvement	21	3.62	0	0.00
Cell Phone	2	0.34	0	0.00
Disregard Traffic Control	36	6.21	0	0.00
Distraction	9	1.55	0	0.00
Drug Involvement	1	0.17	0	0.00
Emotional	2	0.34	0	0.00
Exceeded Stated Speed Limit	0	0.00	0	0.00
Failed to Yield Right of Way	98	16.90	1	25.00
Fatigue	0	0.00	0	0.00
Fell Asleep	0	0.00	0	0.00
Following Too Close	3	0.52	0	0.00
Improper Backing	2	0.34	0	0.00
Improper Passing	6	1.03	0	0.00
Inattention	175	30.17	2	50.00
Lost Consciousness/Fainted	2	0.34	0	0.00
Medication	3	0.52	0	0.00
Misjudge Clearance	9	1.55	0	0.00
Not Under Proper Control	10	1.72	0	0.00
Overcorrecting/Oversteering	0	0.00	0	0.00
Physical Disability	2	0.34	0	0.00
Sick	0	0.00	0	0.00
Too Fast for Conditions	3	0.52	2	50.00
Turning Improperly	5	0.86	0	0.00
Weaving in Traffic	4	0.69	0	0.00

CONTRIBUTING FACTORS (cont'd)

The following tables outline driver factors that contributed to each type of collision. Driver-contributing factors are summarized for each specific collision type. Any factor cannot be accumulated more than once in one collision. The percentages represent the percent a given factor occurred in a specific type of collision.
COLLISIONS INVOLVING

ALL TERRAIN VEHICLES	
TOTAL ALL TERRAIN	127
VEHICLE COLLISIONS	
FATAL COLLISIONS	10
INJURY COLLISIONS	103
TOTAL KILLED	11
Wearing Helmet	1
TOTAL INJURED	156

CONTRIBUTING FACTORS (cont'd)

The following tables outline driver factors that contributed to each type of collision. Driver-contributing factors are summarized for each specific collision type. Any factor cannot be accumulated more than once in one collision. The percentages represent the percent a given factor occurred in a specific type of collision.

COLLISIONS INVOL VING TRUCKS*	
TOTAL TRUCK COLLISIONS	10,276
FATAL COLLISIONS	88
INJURY COLLISIONS	2,181
TOTAL KILLED	102
TOTAL INJURED	3,140

*A truck is defined as a vehicle with a registered weight of 10,000 pounds or more.

TRUCK COLLISIONS				
DRIVER CONTRIBUTING FACTORS	$\begin{gathered} \text { ALL } \\ \text { COLLISIONS } \end{gathered}$	$\begin{aligned} & \text { PERCENT } \\ & \text { OF TOTAL } \end{aligned}$	FATAL COLLISIONS	PERCENT OF TOTAL
Alcohol Involvement	180	1.75	6	6.82
Cell Phone	17	0.17	0	0.00
Disregard Traffic Control	270	2.63	10	11.36
Distraction	201	1.96	1	1.14
Drug Involvement	29	0.28	2	2.27
Emotional	21	0.20	0	0.00
Exceeded Stated Speed Limit	111	1.08	6	6.82
Failed to Yield Right of Way	1,133	11.03	18	20.45
Fatigue	33	0.32	1	1.14
Fell Asleep	129	1.26	2	2.27
Following Too Close	513	4.99	0	0.00
Improper Backing	197	1.92	0	0.00
Improper Passing	174	1.69	0	0.00
Inattention	3,621	35.24	26	29.55
Lost Consciousness/Fainted	40	0.39	0	0.00
Medication	14	0.14	0	0.00
Misjudge Clearance	988	9.61	0	0.00
Not Under Proper Control	574	5.59	16	18.18
Overcorrecting/Oversteering	171	1.66	4	4.55
Physical Disability	13	0.13	2	2.27
Sick	27	0.26	0	0.00
Too Fast for Conditions	425	4.14	5	5.68
Turning Improperly	288	2.80	5	5.68
Weaving in Traffic	46	0.45	1	1.14

\left.| TRAIN COLLISIONS | | | | |
| :--- | :---: | :---: | :---: | :---: |$\right]$

CONTRIBUTING FACTORS (cont'd)

The following tables outline driver factors that contributed to each type of collision. Driver-contributing factors are summarized for each specific collision type. Any factor cannot be accumulated more than once in one collision. The percentages represent the percent a given factor occurred in a specific type of collision.

COLLISIONS INVOL VING					
MULTIPLE FATALITIES		$	$	TOTAL MULTIPLE	78
:---	:---				
FATALITY COLLISIONS					
FATAL COLLISIONS	78				
INJURY COLLISIONS	0				
TOTAL KILLED	177				
TOTAL INJURED	144				

MULTIPLE FATALITY COLLISIONS				
DRIVER CONTRIBUTING FACTORS	$\begin{gathered} \text { ALL } \\ \text { COLLISIONS } \end{gathered}$	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Alcohol Involvement	19	24.36	19	24.36
Cell Phone	0	0.00	0	0.00
Disregard Traffic Control	7	8.97	7	8.97
Distraction	0	0.00	0	0.00
Drug Involvement	1	1.28	1	1.28
Emotional	0	0.00	0	0.00
Exceeded Stated Speed Limit	14	17.95	14	17.95
Failed to Yield Right of Way	15	19.23	15	19.23
Fatigue	0	0.00	0	0.00
Fell Asleep	2	2.56	2	2.56
Following Too Close	0	0.00	0	0.00
Improper Backing	0	0.00	0	0.00
Improper Passing	2	2.56	2	2.56
Inattention	18	23.08	18	23.08
Lost Consciousness/Fainted	1	1.28	1	1.28
Medication	0	0.00	0	0.00
Misjudge Clearance	0	0.00	0	0.00
Not Under Proper Control	9	11.54	9	11.54
Overcorrecting/Oversteering	9	11.54	9	11.54
Physical Disability	1	1.28	1	1.28
Sick	1	1.28	1	1.28
Too Fast for Conditions	8	10.26	8	10.26
Turning Improperly	0	0.00	0	0.00
Weaving in Traffic	1	1.28	1	1.28

COLLISIONS
 BY
 COUNTY

COLLIS $\mathbb{D N S}$ BY COUNTY

1999 VS 2000

COUNTY	C O L L IS IO N S								P ERSONS			
	TO TAL		FATAL		NON FATAL \mathbb{N} JURY		PROPERTY DAMAGE		K ILLED		\mathbb{N} JUR ED	
	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000
Adair	466	556	7	3	120	136	339	417	7	3	177	206
AIlen	509	377	5	1	141	141	363	235	7	1	232	193
Anderson	515	484	2	3	146	110	367	371	2	3	202	176
B alard	188	256	3	3	68	84	117	169	3	4	96	137
B amen	1,297	1,275	4	6	381	363	912	906	5	6	589	574
Bath	289	324	2	4	85	91	202	229	2	4	156	119
Bell	612	697	4	3	202	236	406	458	4	3	305	387
Boone	3,507	3,691	5	7	851	799	2,651	2,885	5	8	1,259	1,120
Bourbon	684	625	4	2	208	187	472	436	4	2	339	258
Boyd	2,073	1,915	4	6	562	478	1,507	1,431	4	7	811	749
Boyle	941	949	8	5	242	251	691	693	10	6	396	391
Bracken	279	271	2	2	79	74	198	195	2	2	117	115
Breathitt	450	442	7	8	201	214	242	220	8	10	388	374
B reckinridge	281	300	7	3	109	115	165	182	7	3	183	198
Bullit	1,325	1,324	9	5	386	343	930	976	10	5	607	512
Butler	220	231	4	3	68	74	148	154	7	3	104	118
Caldw ell	323	355	3	3	95	105	225	247	3	5	150	181
Calbway	970	1,024	3	7	260	258	707	759	3	7	376	396
Campbell	3,027	2,746	13	2	638	525	2,376	2,219	13	2	917	738
C artisk	35	69	3	0	14	22	18	47	3	0	20	30
Caroll	474	441	1	5	148	101	325	335	1	5	204	177
Carter	721	659	12	7	214	214	495	438	14	9	361	310
Casey	257	264	3	1	88	63	166	200	3	1	137	100
Christian	1,973	1,913	10	14	577	504	1,386	1,395	12	15	914	777
C lark	1,260	1,195	6	5	331	254	923	936	8	10	484	368
C lay	455	503	11	9	194	211	250	283	12	11	347	367
C linton	175	162	2	3	49	44	124	115	2	3	96	72
Criltenden	222	220	4	0	83	86	135	134	4	0	124	126
Cum berand	84	100	4	2	24	27	56	71	6	2	40	49
D aviess	3,229	3,576	10	10	730	821	2,489	2,745	10	11	1,095	1,258
Edm onson	247	230	2	5	93	78	152	147	2	9	135	123
E Inott	60	159	1	2	33	45	26	112	1	3	53	66
Estill	399	306	4	4	142	93	253	209	4	4	235	143
Fayette	12,324	13,040	17	20	2,845	2,831	9,462	10,189	19	24	4,177	4,121
Flem ing	293	246	1	4	95	89	197	153	1	5	153	141
Fbyd	1,048	1,004	14	11	456	468	578	525	15	12	724	809
Franklin	1,567	1,731	10	9	385	335	1,172	1,387	12	10	559	503
Fulton	158	237	2	1	54	75	102	161	6	3	73	113
Galatin	226	202	1	0	76	69	149	133	1	0	124	102
G arrard	420	398	6	3	143	122	271	273	7	4	216	183

COLLIS $\mathbb{D N S}$ BY COUNTY

1999 VS 2000

COUNTY	C O L L IS IO N S								P ERSONS			
	TO TAL		FATAL		NON FATAL $\mathbb{N} J U R Y$		PROPERTY DAMAGE		K ILLED		\mathbb{N} JUR ED	
	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000
G rant	902	915	8	5	224	232	670	678	8	5	368	327
G raves	988	895	11	7	256	239	721	649	14	7	398	365
G rayson	290	747	7	3	187	206	96	538	7	3	263	302
G reen	245	231	1	1	66	75	178	155	1	1	102	122
G reenup	738	791	4	6	243	244	491	541	5	6	373	376
H ancock	179	137	2	2	56	37	121	98	2	2	74	61
H ardin	2,611	2,773	20	15	676	647	1,915	2,111	21	17	1,073	1,053
H aran	709	735	8	7	244	273	457	455	8	12	382	425
H arrison	520	584	4	4	152	138	364	442	4	4	213	185
H art	524	417	9	9	158	129	357	279	10	12	256	202
H enderson	1,865	2,028	7	5	461	500	1,397	1,523	7	5	697	774
H enry	373	439	5	2	109	134	259	303	5	2	162	177
H ickm an	119	100	2	1	44	38	73	61	2	1	61	51
H opkins	1,611	1,565	10	8	364	389	1,237	1,168	10	9	517	577
Jackson	327	261	4	2	145	101	178	158	5	2	247	156
Jefferson	28,013	29,214	63	86	6,632	6,576	21,318	22,552	68	95	9,817	9,746
Jessam ine	1,188	1,344	4	6	298	333	886	1,005	5	8	440	497
Johnson	552	600	0	3	207	216	345	381	0	4	350	344
Kenton	6,011	5,666	11	9	1,362	1,121	4,638	4,536	12	9	1,935	1,543
Knott	373	347	5	6	151	156	217	185	6	6	250	237
Knox	787	849	8	6	303	313	476	530	8	6	508	499
Larue	335	355	3	0	100	101	232	254	3	0	139	150
Laurel	1,648	1,703	11	13	509	442	1,128	1,248	13	14	778	731
Law rence	329	293	4	1	119	119	206	173	4	1	181	192
Lee	138	104	2	2	52	38	84	64	2	3	86	76
Leslie	308	248	3	8	164	127	141	113	3	9	255	228
Letcher	649	557	5	9	265	225	379	323	5	9	423	365
Lew is	335	269	7	12	94	74	234	183	8	15	158	145
Lincoln	389	506	3	3	169	171	217	332	3	3	267	256
Livingston	222	240	1	2	69	76	152	162	1	2	109	108
Logan	714	646	7	5	222	194	485	447	7	7	341	297
Lyon	245	239	3	3	84	63	158	173	3	4	126	87
M cC racken	2,904	2,562	13	17	840	682	2,051	1,863	13	20	1,323	1,107
M cC reary	319	330	5	8	109	115	205	207	5	10	184	185
M cLean	226	228	2	2	76	85	148	141	2	2	110	143
M adison	2,541	2,615	17	15	625	595	1,899	2,005	22	15	905	925
M agoffin	225	245	1	2	122	111	102	132	1	2	187	198
M arion	499	524	6	6	146	147	347	371	6	6	225	235
M arshall	710	795	6	4	211	236	493	555	6	5	319	359
M artin	253	285	2	1	121	128	130	156	2	1	205	210

COLLIS IONS BY COUNTY

1999 VS 2000

COUNTY	C O L L IS IO N S								P ER S O N S			
	TO TAL		FATAL		NON FATAL $\mathbb{N} J U R Y$		PROPERTY DAM AGE		K ILLED		\mathbb{N} JUR ED	
	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000
M ason	824	730	7	11	193	151	624	568	9	14	282	243
M eade	544	520	9	10	195	167	340	343	10	11	316	282
M enifee	134	91	1	2	59	32	74	57	1	2	98	54
M ercer	531	599	4	1	171	154	356	444	5	2	252	232
M etcalfe	163	248	3	3	49	73	111	172	3	3	81	114
M onroe	250	195	3	2	91	46	156	147	3	2	152	67
M ontgom ery	720	826	8	4	190	214	522	608	8	6	274	343
M organ	305	309	5	2	123	127	177	180	8	4	177	198
M uhlenberg	901	956	10	7	262	286	629	663	13	7	413	459
Nelson	1,220	1,206	12	5	314	281	894	920	14	5	477	426
N icholas	185	168	1	1	52	48	132	119	1	1	79	76
O hi	474	608	3	8	182	222	289	378	3	8	265	357
o ldham	986	867	6	3	248	229	732	635	9	3	362	332
O wen	223	269	3	1	66	96	154	172	3	1	105	135
Owsley	129	87	1	0	29	30	99	57	1	0	41	44
Pendleton	378	381	1	6	117	101	260	274	2	6	172	160
P eny	993	1,048	6	7	389	390	598	651	7	7	639	648
P ike	2,007	2,056	19	23	854	861	1,134	1,172	23	23	1,362	1,363
Powell	370	323	3	6	124	109	243	208	3	6	194	172
Pulaski	1,737	1,677	14	13	480	460	1,243	1,204	16	15	743	719
R obertson	15	46	0	0	6	19	9	27	0	0	10	33
R ockcastle	505	443	4	4	168	131	333	308	4	4	269	215
R ow an	912	905	4	4	260	235	648	666	7	4	400	363
R ussell	339	366	4	5	109	98	226	263	5	5	170	156
S cott	1,283	1,345	6	8	354	328	923	1,009	7	8	544	503
Sheby	1,060	1,229	12	8	266	274	782	947	15	9	397	451
S in pson	564	520	7	5	176	126	381	389	7	5	256	191
Spencer	197	235	4	3	63	79	130	153	4	3	100	140
Taybr	748	688	3	5	210	155	535	528	3	8	313	222
Todd	235	225	3	2	73	67	159	156	3	3	117	108
Trigg	322	264	2	2	107	74	213	188	2	3	165	115
Trimble	206	208	3	2	63	55	140	151	3	2	99	85
Union	457	469	4	3	136	168	317	298	4	3	211	251
W anen	3,893	4,003	13	17	1,001	1,034	2,879	2,952	14	21	1,522	1,611
W ashington	269	268	2	5	95	62	172	201	2	6	160	96
W ayne	491	492	3	5	147	130	341	357	3	9	245	214
W ebster	346	400	2	3	117	130	227	267	2	3	160	203
W hitley	959	1,013	9	7	291	293	659	713	10	8	483	492
W olfe	205	205	5	3	83	71	117	131	6	3	134	108
W oodford	639	712	6	8	161	164	472	540	10	8	230	252
TOTALS	132,216	135,079	729	711	36,125	34,732	95,362	99,636	819	810	54,951	53,129

COLLIS $\mathbb{D} N S \mathbb{N} V O L V \mathbb{N} G D R \mathbb{N} K \mathbb{N} G \operatorname{DR} \mathbb{I} E R S$ BY COUNTY
 1999 VS 2000

COUNTY	C O L L IS IO N S								P ERSONS			
	TO TAL		FATAL *		NON FATAL \mathbb{N} JURY		PROPERTY DAMAGE		K LLLED *		\mathbb{N} JURED	
	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000
Adair	17	23	1	1	11	12	5	10	1	1	14	15
A Ilen	18	21	1	0	10	11	7	10	1	0	21	17
Anderson	31	19	0	0	14	6	17	13	0	0	17	6
B a lard	18	16	2	1	12	9	4	6	2	1	21	10
Bamen	41	49	3	2	20	26	18	21	4	2	27	35
Bath	13	20	1	3	7	12	5	5	1	3	17	19
BeII	29	29	1	1	12	13	16	15	1	1	23	26
Boone	105	138	1	0	57	59	47	79	1	0	86	76
Bourbon	28	39	2	1	15	16	11	22	2	1	18	26
Boyd	61	71	2	0	26	33	33	38	2	0	36	50
Boyle	39	36	3	0	13	16	23	20	4	0	28	32
Bracken	13	13	1	1	8	8	4	4	1	1	13	16
Breathit	30	39	3	1	19	30	8	8	3	1	27	52
Breckinridge	17	19	2	0	11	8	4	11	2	0	17	10
Bulite	57	79	6	3	29	37	22	39	6	3	53	56
Butier	13	14	0	1	9	8	4	5	0	1	14	13
Caldwell	13	20	1	1	7	10	5	9	1	2	11	18
Calbway	41	50	0	2	24	19	17	29	0	2	31	31
Cam pbell	104	122	5	0	35	44	64	78	5	0	46	70
C arlisk	4	2	1	0	3	2	0	0	1	0	3	2
Canoll	32	33	0	1	13	16	19	16	0	1	17	32
C arter	40	40	3	3	16	26	21	11	4	5	31	43
C asey	19	15	3	0	12	7	4	8	3	0	19	8
Christian	85	85	1	3	37	40	47	42	1	3	58	67
C lark	59	44	1	1	24	19	34	24	1	1	32	29
C by	28	22	4	1	15	18	9	3	5	1	35	31
C linton	10	5	1	1	5	3	4	1	1	1	13	6
Critenden	14	7	0	0	10	5	4	2	0	0	17	5
Cum berand	4	3	3	0	1	1	0	2	4	0	4	1
Daviess	122	138	3	3	55	47	64	88	3	3	73	78
Edm onson	16	18	1	0	11	14	4	4	1	0	16	23
E Piott	5	16	0	0	3	10	2	6	0	1	5	17
Estill	20	22	1	1	13	11	6	10	1	1	25	21
Fayette	459	600	3	9	162	221	294	370	3	11	238	342
Flem ing	15	11	0	1	11	7	4	3	0	1	14	9
Fbyd	75	71	5	1	48	48	22	22	6	1	73	71
Franklin	67	70	2	1	31	36	34	33	2	1	44	48
Fulton	9	14	2	1	3	5	4	8	6	3	3	9
G alatin	8	16	1	0	4	7	3	9	1	0	6	11
G anard	18	18	0	1	9	10	9	7	0	2	16	13

* Fatalcollision data has been adjusted to reflect follow -up studies ofdrivers with blood alcoholcontent (BAC) of . 01 orhigher (from FARS).

Th is also affects the totalofallcollisions.

COLLIS $\mathbb{D} N S \mathbb{N V O L V \mathbb { N } G D R \mathbb { N } K \mathbb { N } G \operatorname { D R } \mathbb { I } E R S}$ BY COUNTY
 1999 VS 2000

COUNTY	C O L L IS IO N S								P ERSONS			
	TO TAL		FATAL *		NON FATAL \mathbb{N} JUR Y		PROPERTY DAMAGE		K LLLED *		\mathbb{N} JUR ED	
	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000
G rant	30	32	1	1	13	20	16	11	1	0	19	35
G raves	35	46	2	1	21	34	12	11	2	1	28	49
G rayson	23	36	1	2	18	22	4	12	1	2	25	35
G reen	6	15	1	0	3	11	2	4	1	0	9	22
G reenup	38	45	1	2	21	20	16	23	2	2	27	28
Hancock	11	5	0	0	7	1	4	4	0	0	10	1
H ardin	94	102	3	2	41	44	50	56	3	2	57	60
H arkn	39	35	4	1	17	23	18	11	4	1	26	30
H amison	27	32	0	1	11	16	16	15	0	1	21	19
H art	23	18	2	2	8	11	13	5	2	2	17	13
Henderson	81	59	3	1	29	34	49	24	3	1	46	52
Henry	24	24	2	0	13	12	9	12	2	0	17	13
H ickm an	6	6	1	1	3	3	2	2	1	1	3	4
Hopkis	51	43	3	2	18	25	30	16	3	2	28	39
Jackson	17	20	1	1	8	13	8	6	1	1	12	21
Jefferson	894	1112	16	26	393	476	485	610	19	28	632	696
Jessam ne	57	81	2	2	24	38	31	41	2	3	35	71
Johnson	26	32	0	1	18	20	8	11	0	1	25	25
Kenton	237	267	2	4	94	108	141	155	3	4	138	153
Knott	21	17	2	1	14	10	5	6	2	1	19	17
Knox	44	40	0	0	26	23	18	17	0	0	39	34
Larue	11	16	1	0	5	7	5	9	1	0	5	7
Laurel	48	63	3	3	21	36	24	24	4	4	36	67
Law rence	11	21	0	0	5	15	6	6	0	0	6	21
Lee	11	12	1	0	7	9	3	3	1	0	10	22
Lesle	18	20	0	1	12	14	6	5	0	1	15	23
Letcher	34	40	3	3	19	26	12	11	3	3	28	47
Lew is	25	24	2	3	14	13	9	8	2	3	28	27
Lincoln	22	25	0	2	13	11	9	12	0	2	16	18
Livingston	11	10	0	0	8	3	3	7	0	0	9	3
Logan	28	30	1	1	9	15	18	14	1	1	10	22
Lyon	9	8	1	1	5	2	3	5	1	1	7	4
M CC racken	95	125	5	5	50	62	40	58	5	5	76	95
M CC reary	29	19	2	4	16	10	11	5	2	4	27	26
M cLean	11	10	0	0	7	3	4	7	0	0	8	4
M adison	136	147	2	6	60	60	74	81	2	6	96	95
M agoffin	29	18	1	0	23	14	5	4	1	0	36	21
M arion	54	66	3	2	26	37	25	27	3	2	42	55
M arshall	27	29	0	0	13	17	14	12	0	0	17	28
M artin	13	21	0	0	10	14	3	7	0	0	12	25

*Fatalcollision data has been adjusted to reflect follow up studies ofdrivers with blood alcoholcontent (BAC) of . 01 orhigher (from FARS). This also affects the totalofallcollisions.

BY COUNTY
 1999 VS 2000

COUNTY	C O L L IS IO N S								P ERSONS			
	TO TAL		FATAL *		NON FATAL \mathbb{N} JURY		PROPERTY DAMAGE		K LLLED *		\mathbb{N} JURED	
	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000
M ason	35	50	3	4	16	23	16	23	5	4	24	35
M eade	29	38	1	4	15	15	13	19	1	5	21	32
M enife	16	10	0	0	10	5	6	5	0	0	18	7
M ercer	22	27	2	0	12	11	8	16	2	0	20	15
M etcalfe	13	12	2	1	6	4	5	7	2	1	12	7
M onroe	16	9	1	0	12	4	3	5	1	0	26	4
M ontgom ery	38	44	3	1	18	22	17	21	3	1	27	36
M organ	15	15	2	1	7	8	6	6	2	1	10	12
M uhlenberg	49	36	1	1	23	21	25	14	1	1	34	24
N elson	66	60	3	0	35	32	28	28	4	0	55	49
N icholas	19	16	1	0	11	8	7	8	1	0	16	11
O hio	28	23	1	2	19	11	8	10	1	2	33	19
O lham	24	24	0	1	13	16	11	7	0	1	17	22
Owen	13	24	1	0	8	13	4	11	1	0	10	15
Owsky	8	7	0	0	6	5	2	2	0	0	12	6
Pendlaton	25	27	0	3	15	10	10	14	0	3	18	12
Peny	48	46	3	3	28	31	17	12	4	3	38	50
P ike	90	103	4	5	44	66	42	32	4	5	60	99
Powell	16	16	2	0	8	9	6	7	2	0	22	13
Pułaski	62	56	2	1	35	29	25	26	2	1	59	48
R obertson	1	7	0	0	0	5	1	2	0	0	0	9
R ockcastle	23	13	2	1	14	6	7	6	2	1	22	11
Rowan	29	48	1	1	17	26	11	21	1	1	21	38
Russell	16	20	0	1	6	11	10	8	0	1	8	17
Scott	50	43	1	1	20	14	29	28	2	1	29	17
Sheby	51	70	3	4	23	28	25	38	3	4	32	47
Simpson	24	21	0	1	14	8	10	12	0	1	20	11
Spencer	15	21	2	1	7	13	6	7	2	1	17	17
Taybr	41	28	0	1	21	15	20	12	0	1	30	25
Todd	6	7	0	0	3	4	3	3	0	0	3	5
Trigg	9	9	0	1	8	1	1	7	0	2	15	1
Trimbl	7	11	1	1	5	6	1	4	1	1	11	10
Union	25	29	0	2	12	15	13	12	0	2	16	20
W amen	150	166	1	3	68	76	81	87	1	3	108	115
W ashington	27	21	1	2	16	8	10	11	1	2	26	12
W ayne	20	18	0	1	13	10	7	7	0	2	22	22
W ebster	15	22	1	1	6	11	8	10	1	1	11	20
W hitly	42	37	5	1	22	17	15	19	6	1	43	29
W olfe	19	11	2	0	13	5	4	6	3	0	19	5
W oodford	36	44	2	3	15	19	19	22	5	3	17	29
TO TALS	5,441	6,127	196	181	2,592	2,903	2,653	3,043	222	196	3,981	4,447

* Fatalcollision data has been adjusted to reflect follow up studies ofdrivers with blood alcoholcontent (BAC) of . 01 orhigher (from FARS). This also affects the totalofallcollisions.

DRIVERS UNDER $\mathbb{N} F L U E N C E O F D R U G S$ BY COUNTY

The folbwing chart shows the number of drivers suspected of being under the nifuence of drugs involved in colisinns, abng w ih the num berofpersons killed or injured in those colisions. A totalof 868 drivers were suspected ofbeng under the infuence ofdrugs based on prelim nary investigation ofthe officer investigating the colision. Of this total, 10 drivers were involved in fatalcollisions and 461 drivers were involved in njury collisins.

COUNTY					
$A D A \mathbb{R}$	6	1	4	1	7
ALLEN	3	0	2	0	2
ANDERSON	3	1	0	1	0
BALLARD	1	0	1	0	3
BARREN	4	0	3	0	6
BATH	3	0	2	0	3
BELL	9	1	4	1	8
BOONE	12	0	3	0	3
BOURBON	11	0	9	0	10
BOYD	18	1	6	2	7
BOYLE	2	0	1	0	2
BRACKEN	1	0	0	0	0
BREATH IIT	11	2	8	3	18
BRECKENRIDGE	1	0	0	0	0
BULLITT	5	2	2	2	2
BUTLER	1	1	1	1	2
CALDW ELL	1	0	1	0	2
CALLOW AY	5	0	2	0	5
CAM PBELL	17	1	5	1	6
CARLISLE	0	0	0	0	0
CARROLU	1	0	1	0	2
CARTER	14	1	9	1	15
CASEY	3	0	0	0	0
CHRISTAN	5	1	1	1	1
CLARK	5	1	1	1	3
CLAY	24	3	17	4	28
CLINTON	2	0	2	0	2
CRITTENDEN	3	0	2	0	4
CUMBERLAND	1	0	1	0	1
DAVESS	15	1	4	1	7
EDMONSON	0	0	0	0	0
ELLD TT	2	0	2	0	2
ESTILL	0	0	0	0	0
FAYETTE	67	5	25	6	41
FLEM NG	0	0	0	0	0
FLO YD	41	3	24	3	41
FRAN KLIN	7	1	4	2	5
FULTO N	1	0	1	0	1
GALLATIN	3	0	1	0	1

COUNTY					
GARRARD	3	1	1	2	2
GRANT	2	0	1	0	1
GRAVES	10	3	2	3	2
GRAYSON	4	0	4	0	7
GREEN	0	0	0	0	0
GREENUP	13	0	7	0	14
HANCOCK	0	0	0	0	0
HARD \mathbb{N}	12	2	4	2	7
HARLAN	22	4	10	7	19
HARR ISON	6	3	2	3	2
HART	4	2	2	2	3
HENDERSON	14	0	4	0	4
HENRY	2	0	1	0	1
H IE KM AN	1	0	1	0	1
HO PKNS	15	2	7	3	12
JACKSON	9	1	6	1	10
JEFFERSON	68	9	29	10	46
JESSAM NE	8	2	2	3	2
JO HNSON	30	1	20	1	29
KENTON	35	1	18	1	28
KNOTT	12	4	6	4	11
KNOX	29	2	18	2	28
LARUE	2	0	2	0	4
LAUREL	25	3	10	3	16
LAW RENCE	8	0	6	0	8
LEE	3	0	2	0	11
LESLE	15	2	10	2	21
LETCHER	15	3	8	3	16
LEW IS	2	1	0	1	0
LINCOLN	6	0	3	0	3
LVINGSTON	2	0	1	0	1
LO G AN	4	1	1	1	1
LYON	2	1	0	1	0
McCRACKEN	6	2	2	2	5
M CCREARY	5	1	1	1	1
M CLEAN	2	1	1	1	4
M AD ISON	9	3	2	3	3
M AGOFFN	6	1	4	1	7
MARDN	1	0	0	0	0

[^0]DRIVERS UNDER $\mathbb{N} F L U E N C E O F D R U G S$ BY COUNTY

COUNTY					
MARSHALL	10	2	5	3	8
M ARTIN	18	0	6	0	9
MASON	3	1	1	1	1
M EADE	4	1	0	1	0
M EN FFEE	0	0	0	0	0
MERCER	1	0	1	0	2
METCALFE	0	0	0	0	0
MONROE	3	1	1	1	1
MONTGOMERY	5	2	2	2	4
MORGAN	1	1	0	1	0
MUHLENBERG	6	2	3	2	7
NELSON	3	1	0	1	0
N CHOLAS	5	0	3	0	6
OHD	6	1	3	1	6
OLDHAM	2	0	1	0	5
OW EN	2	1	1	1	1
OW SLEY	1	0	1	0	1
PENDLETON	6	1	2	1	2
PERRY	23	2	11	2	18
PIKE	57	10	30	10	48
POW ELL	3	3	0	3	0
PULASKI	19	2	7	2	10

COUNTY					
ROBERTSON	0	0	0	0	0
ROCKCASTLE	7	2	3	2	4
ROW AN	4	2	1	2	1
RUSSELL	8	1	5	1	6
SCOTT	4	1	2	1	2
SHELBY	6	1	2	1	3
SIM PSON	2	1	0	1	0
SPENCER	1	1	0	1	0
TAYLOR	4	1	0	2	0
TODD	1	0	0	0	0
TR IGG	1	0	0	0	0
TR IM BLE	0	0	0	0	0
UNDN	3	1	2	1	3
W ARREN	24	5	11	5	17
WASHINGTON	0	0	0	0	0
W AYNE	4	0	0	0	0
W EBSTER	2	1	1	1	1
W H ITLEY	18	3	8	3	11
W O LFE	2	0	0	0	0
WOODFORD	1	0	1	0	2
TOTALS	990	133	461	147	749

*Fatalcollision data has been adjusted to reflect follow up studies ofdrivers under the influence ofdrugs (from FARS).
This also affects the totalofallcollisions.

ALL COLLIS DNS

BY AREA DEVELO PM ENT D ISTRITT

AREA DEVELOPMENT D IS TR ICT	$\begin{gathered} \text { TOTAL } \\ \text { NUMBER } \\ \text { REPORTED } \\ \hline \end{gathered}$	FOTAL COLLIS 10 NS REPORTED		NUMBER PERSONS	
		FATAL	\mathbb{N} JUR Y	KILLED	\mathbb{N} JUR ED
Purchase	5,938	40	1,634	47	2,558
Pennyrie	5,977	41	1,650	48	2,538
G reen R iver	7,446	33	1,963	34	3,047
Bamen R iver	8,142	56	2,258	69	3,490
Lincoh Trail	6,693	47	1,726	51	2,742
KIPDA	33,516	109	7,690	119	11,443
N orthem Kentucky	14,311	35	3,044	36	4,302
Buffab Trace	1,562	29	407	36	677
G ateway	2,455	16	699	20	1,077
FIVCO	3,817	22	1,100	26	1,693
B ig S andy	4,190	40	1,784	42	2,924
Kentucky R iver	3,038	43	1,251	47	2,080
Cum berand Valky	6,204	51	2,000	60	3,272
Lake Cum berand	4,866	46	1,303	57	2,045
B hegrass	26,924	103	6,223	118	9,241
TO TALS	135,079	711	34,732	810	53,129

ALCOHOLRELATED COLLTSDN

BY AREA DEVELO PMENT D ISTR ICT

AREADEVELO PMENTDISTRICT	$\begin{gathered} \text { TOTAL } \\ \text { NUMBER } \\ \text { REPORTED } \\ \hline \end{gathered}$	TOTAL COLLISTDNS REPORTED		NUMBER PERSONS	
		FATAL*	\mathbb{N} JUR Y	K ILLED *	\mathbb{N} JUR ED
Purchase	288	11	151	13	228
Pennyril	225	9	111	11	166
G reen R iver	286	9	122	9	194
B amen R iver	358	11	177	11	260
Lincoln Trail	358	12	173	13	260
KIPDA	1,341	36	588	38	861
N orthem Kentucky	659	9	277	8	404
Buffab Trace	105	9	56	9	96
G atew ay	137	6	73	6	112
FIVCO	193	5	104	8	159
B ig S andy	245	7	162	7	241
Kentucky R iver	192	9	130	9	222
Cum berland Vally	259	9	149	10	249
Lake Cum berrand	202	10	109	11	190
B luegrass	1,279	29	521	33	805
TO TALS	6,127	181	2,903	196	4,447

*Fatalcollision data has been adjusted to reflect follow -up studies ofdrivers (FARS).
This also affects the totalofallcollisions.
DRUG RELATED COLLISDNS
BY AREA DEVELO PMENT DISTRICT

AREADEVELO PM ENTD ISTRICT	TOTALNUMBERREPORTED	TOTAL COLLISISN REPORTED		NUMBER PERSONS	
		FATAL*	\mathbb{N} JUR Y	K ILLED*	\mathbb{N} JURED
Purchase	34	7	14	8	25
Pennyrie	36	6	15	7	27
G reen R iver	42	5	15	5	25
Bamen R iver	45	11	21	11	32
Lincoln Trail	27	4	10	4	18
KPDA	84	13	35	14	57
N orthem Kentucky	78	4	32	4	44
Buffab Trace	6	2	1	2	1
G atew ay	13	5	5	5	8
FIVCO	55	2	30	3	46
B ig S andy	152	15	84	15	134
Kentucky R iver	82	13	46	14	96
Cum berland Valley	143	19	76	23	124
Lake Cum beriand	52	6	20	7	27
Bluegrass	141	21	57	25	85
TO TALS	990	133	461	147	749

*Fatalcollision data has been adjusted to reflect follow up studies ofdrivers (FARS).
This also affects the totalofallcollisions.

AREA DEVELO PMENT D ISTR ITT	COUNTES \mathbb{N} D $\mathbb{S T R} \mathbb{C} T$
Purchase Pennyrie G reen R iver Bamen R iver Lincoln Trail KPDA N orthem Kentucky Buffab Trace G atew ay FIVCO Big S andy Kentucky R iver Cum berrand Valey Lake Cum beriand Bluegrass	B alard, C albw ay, C arlisle, Fulton, G raves, H ickm an, M CC racken, M arshall C aldw ell, C hristian, C rittenden, H opkins, Livingston, Lyon, M uhlenberg, Todd, Trigg Daviess, H ancock, H enderson, M cLean, O hí, Union, W ebster A len, B arren, Butler, Edm onson, H art, Logan, M etcalfe, M onroe, S im pson, W arren B reckinridge, G rayson, H ardin, Larue, M arion, M eade, N elson, W ashington Bullit, H enry, Jefferson, O laham, Sheby, Spencer, Trim ble Boone, C am pbell, C arroll, G a Ilatin, G rant, Kenton, O w en, Pendleton B racken, Fl lem ing, Lew is, M ason, R obertson Bath, M enifee, M ontgom ery, M organ, R ow an B oyd, C arter, E liott, G reenup, Law rence Fbyd, Johnson, M agoffin, M artin, P ke B reathilt, Knott, Lee, Leslie, Letcher, O w sley, Peny, W olfe Bell, C lay, H arran, Jackson, Knox, Laurel, R ockcastle, W hitey Adair, C asey, C linton, C um berland, G reen, M cC reary, Pulaski, R ussell, Taybr, W ayne Anderson, Bourbon, Boyle, C lark, Estill, Fayette, Franklin, G anard, H arrison, Jessam ine Lincolh, M adison, M ercer, N icholas, P ow ell, S cott, W oodford

PARKING LOTS/ PRIVATE PROPERTY

COLLISIDNS BY COUNTY
 PARKING LOTS /PRIVATE PROPERTY*
 2000

COUNTY	C O L L IS IO N S				PERSONS	
	TO TAL	FATAL	NON FATAL INJURY	PROPERTY DAMAGE	K LLLED	\mathbb{N} JURED
Adair	121	0	4	117	0	4
A Inn	63	0	4	59	0	5
Anderson	111	0	5	106	0	9
Balard	32	0	3	29	0	3
Bamen	67	0	5	62	0	5
Bath	46	0	1	45	0	1
BeII	188	0	10	178	0	13
Boone	801	0	42	759	0	50
B ourbon	113	0	7	106	0	7
Boyd	471	0	19	452	0	26
Boyl	197	0	6	191	0	9
B racken	19	0	0	19	0	0
Breathit	97	0	7	90	0	9
Breckinridge	59	0	2	57	0	2
Bulith	179	0	13	166	0	14
Buter	32	0	2	30	0	2
Cablwell	32	0	1	31	0	1
Calbway	171	0	4	167	0	4
C am pbell	588	0	16	572	0	18
C arlisle	4	0	1	3	0	1
C anoll	74	0	2	72	0	3
C arter	130	0	3	127	0	3
Casey	69	0	2	67	0	6
Christian	160	0	13	147	0	14
C lark	298	0	10	288	0	10
C by	107	0	9	98	0	13
C linton	49	0	0	49	0	0
Critenden	49	0	4	45	0	7
Cum berzand	5	0	0	5	0	0
Daviess	883	0	44	839	0	55
Edm onson	36	0	0	36	0	0
E Phett	15	0	2	13	0	2
Estill	56	0	2	54	0	3
Fayette	2,968	1	109	2,858	1	121
Flem ing	55	0	1	54	0	1
Fbyd	141	1	22	118	1	29
Franklin	489	0	13	476	0	16
Fulton	66	0	2	64	0	2
G alatin	29	0	1	28	0	1
G anard	61	0	4	57	0	4

*O nly 2000 data available

COLLISIDNS BY COUNTY
 PARKING LOTS /PRIVATE PROPERTY*
 2000

COUNTY	C O L L IS IO N S				PERSONS	
	TO TAL	FATAL	NON FATAL $\mathbb{N} J U R Y$	PROPERTY DAMAGE	K LLLED	\mathbb{N} JURED
G rant	184	0	3	181	0	4
G raves	214	0	11	203	0	11
G rayson	183	0	5	178	0	6
G reen	48	0	1	47	0	2
G reenup	104	0	4	100	0	5
H ancock	33	0	1	32	0	1
H ardin	376	0	17	359	0	21
H aran	140	0	6	134	0	14
H a mison	145	0	2	143	0	2
H art	70	0	5	65	0	5
Henderson	524	0	20	504	0	27
Henry	78	0	2	76	0	3
H ickm an	11	0	1	10	0	1
H opkins	65	0	2	63	0	5
Jackson	48	0	2	46	0	3
Jefferson	1,733	2	194	1,537	2	219
Jessam ne	326	0	11	315	0	15
Johnson	206	2	20	184	2	23
Kenton	805	0	23	782	0	24
Knott	58	0	11	47	0	13
Knox	169	0	11	158	0	13
Larue	43	0	2	41	0	2
Laurel	346	0	16	330	0	20
Law rence	52	0	3	49	0	4
Lee	20	1	1	18	1	1
Leslie	35	0	1	34	0	2
Letcher	109	1	8	100	1	8
Lew is	35	0	2	33	0	2
Lincoh	69	0	3	66	0	3
Livingston	22	0	1	21	0	2
Logan	159	0	7	152	0	7
Lyon	38	0	0	38	0	0
M CC racken	299	0	21	278	0	27
M cC reary	74	0	3	71	0	5
M cLean	46	0	2	44	0	2
M adison	884	0	22	862	0	29
M agoffin	51	0	11	40	0	14
M aron	117	0	3	114	0	3
M arshal	121	0	8	113	0	10
M artin	65	0	12	53	0	13

*O nly 2000 data available

COLLISIDNS BY COUNTY
 PARKING LOTS /PRIVATE PROPERTY*
 2000

COUNTY	C O L L IS IO N S				PERSONS	
	TOTAL	FATAL	NON FATAL NJURY	PROPERTY DAMAGE	K ILLED	INJURED
M ason	208	0	4	204	0	4
M eade	58	0	4	54	0	4
M enife	14	0	0	14	0	0
M ercer	104	1	4	99	1	5
M etcalfe	29	0	0	29	0	0
M onroe	40	0	2	38	0	3
M ontgom ery	231	0	7	224	0	11
M organ	70	0	6	64	0	6
M uhlenberg	192	0	5	187	0	5
N elson	108	1	8	99	1	15
N icholas	31	0	3	28	0	3
$\bigcirc \mathrm{hi}$	123	0	3	120	0	3
O liham	71	0	5	66	0	6
Owen	30	0	3	27	0	3
O wsky	12	0	1	11	0	1
Pendleton	58	0	3	55	0	4
Peny	260	0	17	243	0	22
P ke	397	0	36	361	0	44
Powell	26	0	2	24	0	2
Pulaski	460	0	10	450	0	12
R obertson	3	0	0	3	0	0
R ockcastle	37	0	2	35	0	3
Rowan	231	0	7	224	0	9
Russell	58	0	4	54	0	5
Scott	143	0	8	135	0	8
Sheby	228	0	10	218	0	12
Simpson	195	0	6	189	0	8
Spencer	36	0	1	35	0	1
Taybr	201	0	3	198	0	3
Todd	39	0	1	38	0	2
Trigg	50	0	3	47	0	3
Trimbl	17	2	0	15	2	0
Union	79	0	6	73	0	7
W amen	569	0	44	525	0	61
W ashington	29	0	0	29	0	0
W ayne	129	0	7	122	0	9
W ebster	49	1	2	46	1	2
W hitley	227	0	9	218	0	11
W olfe	39	0	5	34	0	6
W oodford	145	0	5	140	0	6
TO TALS	22,262	13	1,119	21,130	13	1,353

TYPES OF COLLISIONS
 PARKING LOTS / PRIVATE PROPERTY

PARKING LOT:

Total Collisions:
\% of Total Collisions: Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:

COLLISION WITH PEDESTRIAN:

Total Collisions:
\% of Total Collisions:
Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions: 23.10\%

COLLISION WITH

 PEDALCYCLIST:Total Collisions:
\% of Total Collisions:
Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:

19,910
89.4\%
15.4\%

2
15.4\%

COLLISION WITH FIXED OBJECT:

Total Collisions:
633
\% of Total Collisions: 2.84\%
Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:
23.10\%
23.10%

COLLISION WITH MOVING MOTOR VEHICLE:

Total Collisions:
\% of Total Collisions:
3.34\%

Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions: \% of All Fatal Collisions:
15.48%
2
15.48%

PARKED VEHICLE COLLISIONS:

Total Collisions:
769
\% of Total Collisions:
Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:

0

0.00\%
0.00\%

COLLISION WITH OTHER OBJECT:

Total Collisions:
\% of Total Collisions:
Persons Killed:
0.21\%

1
7.70\%

1
7.70\%

NON-COLLISION:

Total Collisions:

\% of Total Collisions:
0.40\%

Persons Killed:
\% of Total Fatalities:
No. of Fatal Collisions:
\% of All Fatal Collisions:
15.40\%

2
15.40%

COLLISION WITH ANIMAL (INCLUDING DEER):

Total Collisions: $\quad 11$
\% of Total Collisions: 0.05%
Persons Killed:
0.00\%

No. of Fatal Collisions: $\quad 0$
\% of All Fatal Collisions: 0.00%

AGE OF DRIVER (ALL COLLISIONS)

PARKING LOTS / PRIVATE PROPERTY

The chart below groups the ages of 27,601 drivers involved in traffic collisions during 2000 in Kentucky (for which age information was available). For each age category, the following information is shown: the percentage of drivers involved in all collisions, the number of drivers involved in these collisions is shown in parentheses, the percentage of all licensed drivers, and the number of licensed drivers is shown in parentheses (includes learner permits). This allows a comparison to be made between the percentage of a given age category is of the driving population and the corresponding percentage this age category is involved in collisions. The percentage of drivers involved in all collisions was higher than the percentage of licensed drivers for the age categories under age 35, especially for the 16 to 19 years of age category. This data does not differentiate drivers "at-fault" versus drivers "not-at-fault." There were 722 driver's ages which could not be determined. These drivers represent 2.6% of all drivers involved in collisions. The percentages given below do not consider the "Unknown" category.

CONTRIBUTING FACTORS

PARKING LOTS / PRIVATE PROPERTY

A variety of factors and conditions can contribute to a collision. Police officers may indicate up to three driver factors for each driver, two vehicular factors for each vehicle, and up to two environmental factors for each collision. This table gives the number of collisions in which a given factor was listed at least once. Accumulations were made only once for each factor indicated in a collision, even if the factor was listed for more than one driver or vehicle. Therefore, the percentages give the percent of collisions in which a given factor is listed.

HUMAN FACTORS	ALL COLLISIONS	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Inattention	10,988	49.36	4	30.77
Misjudge Clearance	1,915	8.60	0	0.00
Failed to Yield Right of Way	1,028	4.62	0	0.00
Improper Backing	881	3.96	0	0.00
Not Under Proper Control	574	2.58	5	38.46
Alcohol Involvement	521	2.34	0	0.00
Distraction	384	1.72	0	0.00
Too Fast for Conditions	255	1.15	1	7.69
Turning Improperly	202	0.91	0	0.00
Exceeded Stated Speed Limit	114	0.51	2	15.38
Drug Involvement	104	0.47	0	0.00
Emotional	102	0.46	0	0.00
Improper Passing	101	0.45	0	0.00
Disregard Traffic Control	97	0.44	0	0.00
Lost Consciousness/Fainted	80	0.36	0	0.00
Physical Disability	75	0.34	0	0.00
Following Too Close	68	0.31	0	0.00
Overcorrecting/Oversteering	67	0.30	0	0.00
Medication	45	0.20	1	7.69
Weaving in Traffic	36	0.16	0	0.00
Sick	30	0.13	0	0.00
Fatigue	28	0.13	0	0.00
Fell Asleep	27	0.12	0	0.00
Cell Phone	25	0.11	0	0.00

CONTRIBUTING FACTORS

PARKING LOTS / PRIVATE PROPERTY (cont'd.)

A variety of factors and conditions can contribute to a collision. Police officers may indicate up to three driver factors for each driver, two vehicular factors for each vehicle, and up to two environmental factors for each collision. This table gives the number of collisions in which a given factor was listed at least once. Accumulations were made only once for each factor indicated in a collision, even if the factor was listed for more than one driver or vehicle. Therefore, the percentages give the percent of collisions in which a given factor is listed.

VEHICULAR FACTORS	ALL COLLISIONS	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Brakes Defective	227	1.02	0	0.00
Steering Failure Tow Hitch Defective / Separation of Units	27	0.12	0	0.00
Tire Failure	17	0.09	0	0.00
Oversized Load on Vehicle	14	0.08	0	0.00
Load Securement	7	0.06	0	0.00
Other Lighting Defective	4	0.02	0	0.00
Headlights Defective	1	0.01	0	0.00
Overweight	0.00	0	0.00	

ENVIRONMENTAL FACTORS	ALL COLLISIONS	PERCENT OF TOTAL	FATAL COLLISIONS	PERCENT OF TOTAL
Slippery Surface	702	3.15	1	7.69
View Obstructed	616	2.77	2	15.38
Improperly Parked Vehicle	152	0.68	0	0.00
Glare	87	0.39	0	0.00
Animal Action	39	0.18	0	0.00
Fixed Object(s)	30	0.13	0	0.00
Hole/Deep Ruts/Bumps	24	0.11	1	7.69
Water Pooling	19	0.09	0	0.00
Traffic Controls Not Working	13	0.06	0	0.00
Roadway Construction	7	0.03	0	0.00
Maintenance / Utility	6	0.03	0	0.00
Shoulder Defective	5	0.02	1	7.69
Debris In Roadway	4	0.02	0	0.00

FATALITY ANALYSIS REPORTING SYSTEM

FATALITY ANALYSIS REPORTING SYSTEM

The Fatality Analysis Reporting System (FARS) is a computerized file containing data on all fatal motor vehicle traffic collisions occurring each year in the fifty states, the District of Columbia, and Puerto Rico. The system is operated by the National Highway Traffic Safety Administration for the purpose of identifying safety problems, suggesting solutions, and helping to provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety countermeasures.
$F A R S$ has a contract with a government agency in each state for the purpose of fatal collision data acquisition. In Kentucky, this contract is with the Kentucky State Police Records Section.

For reasons of timeliness in reporting and continuity among the states, FARS counts only those fatalities that occur within 30 days of the collision date. FARS does not include fatalities occurring in parking lots or on private property. FARS differs from Kentucky data in that it collects data not only from the collision reports submitted from across the state, but contacts many other sources to obtain additional data pertinent to the collision, vehicles, drivers, etc. Examples of additional sources contacted by FARS are vehicle registration files, Driver Licensing, Vital Statistics, EMS reports, labs, coroners, and medical examiners. THE FARS DATA CANNOT BE COMPARED DIRECTLY WITH THE PREVIOUSLY LISTED STATISTICS BECAUSE OF A DIFFERENCE IN THE REPORTING CRITERIA.

DRIVERS INVOLVED IN FATAL COLLISIONS - AGE AND ALCOHOL INVOLVEMENT

The chart below depicts the ages of all drivers in fatal collisions in 2000 vs. alcohol involved drivers in fatal collisions during the same time period and the percentages of involvement for various ages and age groups. The alcohol involved teenage driver (ages 13 through 19) represents 4% of the total number of drinking drivers involved in fatal collisions.

NOTE: Data is derived from the Fatality Analysis Reporting System (FARS) . The number of alcohol related drivers differs from those reported through the Kentucky Collision Reporting System because FARS follows up on alcohol test results.
*Alcohol involved drivers refers to a driver suspected by the police to be drinking and who tested positive for alcohol in a subsequent test (. 01 or higher).

AGE	Number of Drivers Involved	Alcohol Involved Drivers	\% Alcohol Involved
Under 16	7	0	0
16	18	0	0
17	31	2	7
18	43	1	2
19	33	4	12
20	42	14	33
21	33	6	18
$22-24$	92	18	20
$25-34$	227	49	22
$35-44$	209	43	21
$45-54$	145	26	18
$55-64$	87	14	16
$65-74$	53	36	11
Over 74	55	0	0
Unknown	7	1	14
TOTALS	1,082	214	17

ALCOHOL INVOLVEMENT BY AGE AND TEST RESULTS FOR DRIVERS INVOLVED IN FATAL COLLISIONS

DURING 2000, THERE WERE 196 PERSONS KILLED IN FATAL COLLISIONS INVOLVING A DRINKING DRIVER. THIS REPRESENTS 24\% OF ALL PERSONS KILLED IN TRAFFIC COLLISIONS IN KENTUCKY DURING 2000.

The chart below shows drinking drivers by age and alcohol test result. Eighty (80) percent of the drinking drivers tested were found to have a blood alcohol content (BAC) of 0.10% or above at the time of the collision.

AGE	NUMBER OF DRINKING DRIVERS*	BAC TEST RESULTS			
		.01-.05	.06-.09	.10-. 19	.20+
Under 16	0	0	0	0	0
16	0	0	0	0	0
17	2	0	1	0	1
18	1	0	0	1	0
19	4	1	0	3	0
20	14	4	0	7	3
21	6	0	0	4	2
22-24	19	2	4	8	5
25-34	49	5	4	27	13
35-44	43	0	4	18	21
45-54	26	2	3	11	10
55-64	14	5	0	7	2
65-74	6	2	0	3	1
75+	0	0	0	0	0
Unknown	1	0	0	0	1
TOTAL	185	21	16	89	59

* Drinking driver refers to a driver suspected by the police to be drinking, and who tested positive for alcohol in a subsequent test.

DURING 2000, TWENTY-FOUR (24) PERCENT OF THE FATALLY INJURED PEDESTRIANS OVER THE AGE OF 15 WERE DRINKING. THEIR AVERAGE ALCOHOL TEST WAS 0.27\%

Another traffic hazard is the drinking pedestrian. The chart on the right shows the number of fatally injured pedestrians by age and alcohol involvement.

FARS total number of pedestrians differs from the number reported through the Kentucky Collision Reporting System because FARS does not include pedestrians killed in parking lots.

FATALLY INJURED PEDESTRIANS

AGE	TOTAL	NUMBER DRINKING	AVERAGE TEST RESULTS
$0-5$	5	0	0
$6-10$	2	0	0
$11-15$	4	0	0
$16-20$	2	0	0
$21-25$	2	0	0
$26-30$	7	2	.21
$31-40$	6	1	.47
$41-50$	5	2	.29
$51-60$	7	2	.18
$61-70$	5	2	.14
$71-80$	4	1	.33
$81+$	4	0	0
UNKNOWN	0	0	0
TOTAL	$\mathbf{5 3}$	$\mathbf{1 0}$.27

SAFETY RESTRAINTS AND EJECTION IN FATAL COLLISIONS

The chart below plots overall results in fatal collisions when motorcycle helmets and other restraints (safety belts, harnesses, child restraints, etc.) are used. A comparison of "used" versus "not used" for 2000 FARS data strongly confirms both the lifesaving advantage as well as the reduction of serious injury when restraints are in place. SIXTY-THREE (63) PERCENT OF THE VEHICLE OCCUPANTS KILLED DURING 2000 WERE NOT RESTRAINED. FIFTY (50) PERCENT OF THE VEHICLE OCCUPANTS SUFFERING INCAPACITATING INJURY WERE NOT RESTRAINED. FORTY (40) PERCENT OF THE OCCUPANTS SUFFERING NON-INCAPACITATING INJURY WERE NOT RESTRAINED. NON-MOTORISTS ARE NOT INCLUDED IN THE CHARTS BELOW.

Result	MOTORCYCLE HELMET			RESTRAINT			TOTAL
	Used	Not Used	Unknown	Used	Not Used	Unknown	
Fatal Injury	20	15	1	235	487	18	776
Incapacitating Injury	1	1	0	172	180	10	364
Non-Incapacitating Injury	1	1	0	145	90	1	238
Possible Injury	0	0	0	69	31	0	100
No Injury	0	0	0	220	57	6	283
Unknown If Injured	0	0	0	0	0	8	8
Injured, Severity Unknown	0	0	0	0	0	0	0
TOTAL	$\mathbf{2 2}$	$\mathbf{1 7}$	$\mathbf{1}$	$\mathbf{8 4 1}$	$\mathbf{8 4 5}$	$\mathbf{4 3}$	$\mathbf{1 , 7 6 9}$

Of the 1,769 vehicle occupants involved in fatal collisions in 2000 , only 863 were using safety restraints - an overall usage rate of 49% in fatal collisions.

EJECTION

Result	Total Ejection	Partial Ejection	No Ejection	Unknown	TOTAL
Fatal Injury	160	43	581	0	784
Incapacitating Injury	25	4	333	0	362
Non-Incapacitating Injury	5	0	240	0	245
Possible Injury	0	0	102	0	102
No Injury	0	0	284	0	284
Unknown If Injured	0	0	5	3	8
Injured, Severity Unknown	0	0	0	0	0
TOTAL	$\mathbf{1 9 0}$	$\mathbf{4 7}$	$\mathbf{1 , 5 4 5}$	$\mathbf{3}$	$\mathbf{1 , 7 8 5}$

The above chart shows overall injuries in fatal collisions according to whether the vehicle occupant was ejected from the vehicle, partially ejected, or not ejected. EIGHTY-SIX (86) PERCENT OF VEHICLE OCCUPANTS WHO WERE EITHER TOTALLY OR PARTIALLY EJECTED WERE KILLED. This data also reaffirms the lifesaving advantage of using an active restraint, since the possibility of being ejected upon impact is significantly reduced.
*Motorcycles are excluded for ejections (not applicable under FARS guidelines).

CHILD RESTRAINTS IN FATAL COLLISIONS

Kentucky's "child restraint law" (KRS 189.125) became effective July 15, 1982, and Subsection (3) requires that "Any driver of a motor vehicle, when transporting a child of forty (40) inches in height or less in a motor vehicle operated on the roadways, streets, and highways of this state, shall have the child properly secured in a child restraint system of a type meeting federal motor vehicle safety standards."

In order to qualify, the child restraint system must be certified as having been federally approved. (Federal approval of a child restraint system is based on its having withstood dynamic crash tests -- 30 mph collision into a fixed barrier.)

The data on child restraints depicted in the chart below reflects age (four years and under) rather than the height of the child. Other states with child restraint laws have adopted the "four years and under" standard in their statutes.

RESULT	 Under Total	Child Restraint Used	Lap Belt \&/or Harness Used	None Used	Unknown
Killed	19	7	1	11	0
Injured (Incapacitating)	11	4	2	4	1
Injured (Non-Incapacitating)	10	7	1	2	0
Injured (Possible)	4	4	0	0	0
Not Injured	9	5	2	2	0
TOTAL	53	27	6	19	1

Of the fifty-three (53) child occupants (four years and under) involved in fatal collisions in 2000, only thirty-three (33) children were secured in a child restraint. Of the nineteen (19) children killed, eleven (11) had no restraint and only seven (7) were using child safety seats. This information confirms what other studies have suggested regarding the effectiveness of child restraints. An infant or small child's survival can depend on whether the child was properly secured.

COST
 of KENTUCKY TRAFFIC COLLISIONS

2000

The calculable costs (economic costs) of motor vehicle collisions on public roads include wage loss, medical expense, administration costs, property damage, and employer costs. Comprehensive costs include not only the economic cost components but also a measure of the value of lost quality of life associated with deaths and injuries. Estimated costs provided by the National Safety Council, considering both economic and comprehensive costs, were used to arrive at a cost range for traffic collisions in Kentucky during 2000 (occurring on public roads).

The economic cost ($\$ 1.9$ billion) was derived from the following formula:

Cost per	X	Number Reported	=	Estimated Cost
Fatalities @ \$1,000,000	X	810	=	\$810,000,000
Incapacitating Injuries @ $\$ 47,900$	X	8,354	=	\$400,156,600
Non-Incapaci Injuries @ \$16,000	X	20,849	=	\$333,584,000
Possible Injuries @ \$9,150	X	23,926	$=$	\$217,726,600
Property Dam @ \$1,861		99,636	=	\$185,422,596
TOTAL ECON COST ESTIM				\$1,946,889,796

The comprehensive cost (\$5.4 billion) was derived from the following formula:

Cost per	X	Number Reported	=	Estimated Cost
Fatalities @ \$3,214,290	X	810	=	\$2,603,574,900
Incapacitating Injuries @ \$159,449	X	8,354	=	\$1,332,036,946
Non-Incapacit Injuries @ \$41,027	X	20,849	=	\$855,371,923
Possible Injuries @ \$19,528	X	23,926	$=$	\$467,226,928
Property Dam @ $\$ 1,861$	X	99,636	=	\$185,422,596
TOTAL COMP COST ESTIMA	N	IVE		\$5,443,633,293

KENTUCKY STATE POLICE
RECORDS BRANCH
1250 Louisville Road
Frankfort, Kentucky 40601

BULK RATE
U.S. POSTAGE PAID Frankfort, KY Permit No. 674

TO:

Please
Place
Stamp

Kentucky State Police
Records Branch / Statistics Section 1250 Louisville Road Frankfort, Kentucky 40601

IMPORTANT NOTICE

Here is your copy of the 2000 TRAFFIC COLLISION FACTS report you requested. If you want to receive the 2001 report, please print or type your name and address below and return this form.

This card must be returned to ensure receipt of the 2001 publication. Existing mailing lists are being revised to include only those individuals who respond to this notice.

city, state, zip

[^0]: Fatalcollision data has been adjusted to reflect follow up studies ofdrivers with blood alcoholcontent (BAC) of . 01 orhigher (from FARS).
 This also affects the totalofallcollisions.

